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Supplementary Figure 1: Derivative of contact with respect to chemical potential vs µ̃ near the phase transitions V-P (left
panel) and P-PP (right panel) at different temperatures. Derivative of contact becomes divergent at T = 0 across these two
critical points. At finite temperatures, such a divergence no longer exists. Here the critical chemical potentials µ̃c = −0.5 and
µ̃c = −0.431 for V-P and P-PP phase transitions.

Supplementary Figure 2: A three-dimensional contour plot c̃/ñ against t and µ̃ at a fixed value of h = 0.8. Near two critical
points µ̃c1 = −0.5 and µ̃c2 = −0.335, different scaling behaviour are visible. See the main text about the critical behaviors of
contact.
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Supplementary Figure 3: Derivative of contact ∂hc̃ vs h. Similar to ∂µ̃c̃, ∂hc̃ also becomes divergent at T = 0 across the phase
transition points. For a fixed value of µ̃ = −0.496 the first (second) divergent peak presents the critical behaviour of the gas
for the phase transitions from P to PP and F to PP, respectively.
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Supplementary Figure 4: Scaling behaviour of the derivative of contact ∂hc̃
√
t vs external field h. The left (right) panel shows

the intersection of the derivatives of contact at different temperatures near the phase transition F-PP (P-PP). Here the critical
field hc = 1.1 and hc = 0.9, respectively. This plot read off the critical dynamics exponent z = 2 and correlation length
exponent ν = 1/2 respectively.

Supplementary Note 1

Tan’s contact
By definition of Tan’s contact c

c = −g
2

2
(
∂P

∂g
)µ,H,T (1)
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and iterating the equations (20)-(23) in the main text we obtain

c̃ = − 1√
π
t

1
2 fAb

1/2 −
1

2π
t(fAb

1/2)2 − 1√
2π
tfAu

1/2f
Ab
1/2 −

1
4π3/2

t
3
2 (fAb

1/2)3

− 5
2
√

2π3/2

(
fAb
1/2

)2

fAu
1/2 −

1
8π2

t2(fAb
1/2)4 − 9

4
√

2π2
t2
(
fAb
1/2

)3

fAu
1/2

− 1
π2
t2
(
fAb
1/2

)2 (
fAu
1/2

)2

+
7

16π
t2fAb

1/2f
Ab
3/2 +

1√
2π
t2fAu

1/2f
Ab
3/2

+
3√
2π
t2fAb

1/2f
Au
3/2 +O

(
t

5
2

)
. (2)

Here we denote the dimensionless contact c̃ = c/ε2b and fxn = Lin(−ex/T ). The above equation of contact looks
very complex. Nevertheless, the universal scaling form of contact is hidden in such complexity of this kind. In the
Supplementary Figure 2 shows a 3D contour plot c̃/ñ against dimensionless temperature t and chemical potential µ̃
at h = 0.8. Near the lower critical point µ̃c = −0.5, the flatness of c̃/ñ is the consequence of the criticality of the
model as discussed in the main paper. The values of c̃/ñ drops very faster for the chemical potential excesses the
upper critical point µ̃c = −0.335 due to the increase of the polarization. We will present further discussions on the
critical behaviour of contact in the following part.

The derivatives of contact connect various thermal and magnetic properties such as density, magnetization and
entropy

1
εb

(
∂c

∂µ

)
g,H,T

= −
(
∂n

∂g

)
µ,H,T

, (3)

1
εb

(
∂c

∂H

)
g,µ,T

= −
(
∂m

∂g

)
µ,H,T

, (4)

1
εb

(
∂c

∂T

)
g,µ,H

= −
(
∂s

∂g

)
µ,H,T

. (5)

We can analytically calculate these derivatives, namely

∂µ̃c̃ = − 2√
π
t−

1
2 fAb
−1/2 −

3
π
fAb
1/2f

Ab
−1/2 −

2
√

2
π

fAu
1/2f

Ab
−1/2 −

1√
2π
fAb
1/2f

Au
−1/2

+t
1
2 [− 3

π3/2
(fAb

1/2)2fAb
−1/2 −

9
√

2
π3/2

fAb
1/2f

Au
1/2f

Ab
−1/2 −

1
π3/2

(fAu
1/2)2fAb

−1/2

− 9
2
√

2π3/2
(fAb

1/2)2fAu
−1/2] +

1
2
t[− 5

π2
(fAb

1/2)3fAb
−1/2 −

30
√

2
π2

(fAb
1/2)2fAu

1/2f
Ab
−1/2

−27
π2
fAb
1/2(fAu

1/2)2fAb
−1/2 −

9
2
√

2π2
(fAb

1/2)3fAu
−1/2 −

6
√

2
π2

(fAb
1/2)2fAu

−1/2

− 6
π2

(fAb
1/2)2fAu

1/2f
Au
−1/2 +

7
4π

(fAb
1/2)2 +

5
√

2
π

fAb
1/2f

Au
1/2 +

2
π
fAb
−1/2f

Ab
3/2

+
√

2
π
fAu
−1/2f

Ab
3/2 +

8
√

2
π

fAb
−1/2f

Au
3/2] +O

(
t

3
2

)
, (6)

∂hc̃ = − 1√
2π
fAu
1/2f

Ab
−1/2 −

1
2
√

2π
fAb
1/2f

Au
−1/2 +

1√
2
t

1
2 [− 3

2π3/2
fAb
1/2f

Au
1/2f

Ab
−1/2

− 1√
2π3/2

(fAu
1/2)2fAb

−1/2 −
5

4π3/2
(fAb

1/2)2fAu
−1/2] +

1
2
t[− 3√

2π2
(fAb

1/2)2fAu
1/2f

Ab
−1/2

− 15
2π2

fAb
1/2(fAu

1/2)2fAb
−1/2 −

9
4
√

2π2
(fAb

1/2)3fAu
−1/2 −

3
π2

(fAb
1/2)2fAu

1/2f
Au
−1/2

+
3√
2π
fAb
1/2f

Au
1/2 +

1√
2π
fAu
−1/2f

Ab
3/2 +

√
2
π
fAb
−1/2f

Au
3/2] +O

(
t

3
2

)
. (7)

Again, we can work out the scaling functions of these derivatives directly from the above equations. In Supplementary
Figure 1, we plot the derivative of contact ∂c̃/∂µ̃ against chemical potential µ̃. It is clearly see that the derivative of
contact evolve into a sharp peak at the critical point.
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Universal Scaling Forms
Quantum phase transitions occur at absolute zero temperature as the driving parameters µ and H are varied across

the phase boundaries. The phase transitions are driven by quantum fluctuations with quantum critical points governed
by divergent correlation lengths. Near a quantum critical point, the many-body system is expected to show universal
scaling behaviour in the thermodynamic quantities. In the critical regime, a universal and scale-invariant description
of the system is expected through the power-law scaling of the thermodynamic properties [3, 4]. Quantum phase
transitions are uniquely characterized by the critical exponents depending only on the dimensionality and symmetry
of the system. In order to work out the connection of Tan’s contact to the criticality of the model, we first present
the dimensionless functions

Ãu = Au/εb = µ̃+ h/2 +
1√
π
t

3
2 f Ãb

3/2, (8)

Ãb = Ab/εb = 2µ̃+ 1 +
1

2
√
π
t

3
2 f Ãb

3/2 +
√

2√
π
t

3
2 f Ãu

3/2. (9)

From equations(8) and (9), we could expand contact (2) in the critical regime, i.e. |µ̃− µ̃c| � 1 and |µ̃− µ̃c| > t near
different quantum phase transitions.

V-P: From vacuum V to the fully-paired phase P, the critical point is µ̃c = −1/2, h < 1. Taking low temperature
limit near the critical point, we can obtain

Ãu ≈ (µ̃− µ̃c) + (h− 1)/2, Ãb ≈ 2(µ̃− µ̃c), (10)

Substituting Eq.(10) into Eq.(2), we can obtain the scaling forms of contact and its derivative with respect to µ.

c̃ = − 1√
π
t

1
2Li 1

2
(−e

2(µ̃−µ̃c)
t ), (11)

∂µ̃c̃ = − 2√
π
t−

1
2Li− 1

2
(−e

2(µ̃−µ̃c)
t ).

In this phase hc is the constant. Therefore there does not exist scaling form of the derivative respect to H, i.e.
∂hc̃ ≈ 0.

V-F: From the vacuum V to the fully-polarized phase F the critical point is µ̃c = −h/2, h > 1. Near the critical
point, we have obtain

Ãu ≈ µ̃− µ̃c, Ãb ≈ 2(µ̃− µ̃c) + 1− h (12)

By expansion of Eq.(2) within the critical regime, the scaling form of contact is almost zero, i.e. c̃ =
− 1√

π
t

1
2Li 1

2
(−e 1−h

t ) ∼ 0. This regime does not exhibit universal scaling behaviour.
F-PP: From the fully-polaized phase F to the partially-polarized phase PP, the critical point is µ̃c = −1/2 + 4

3π (h−
1)3/2 and h > 1. Omitting the higher order contributions from t and µ̃− µ̃c we can obtain

Ãu ≈ (µ̃− µ̃c) + a/2, Ãb ≈ 2(µ̃− µ̃c) (13)

where a = (h− 1)(1 + 2
3π

√
h− 1). Substituting Eq.(13) into Eq.(2), we can get the scaling forms

c̃ = − 1√
π
t

1
2Li 1

2
(−e

2(µ̃−µ̃c)
t )(1− 1

π
a1/2 +

1
π
a3/2), (14)

∂µ̃c̃ = t−
1
2Li− 1

2
(−e

2(µ̃−µ̃c)
t )(− 2√

π
− 4
π3/2

a1/2 +
2

π5/2
a). (15)

P-PP: Similar calculations can be carried out for the phase transitions from the phase P into phase PP, the critical
point is µ̃c = −h/2 + 4

3π (1− h)3/2 and h < 1. Thus near the critical pint, we have

Ãu ≈ µ̃− µ̃c, Ãb ≈ 2(µ̃− µ̃c) + b, (16)

where b = (1− h)(1 + 2
π

√
1− h). Substituting Eq.(16) into Eq.(2), we obtain the scaling forms

c̃ = c̃0 + t
1
2λLi 1

2
(−e

µ̃−µ̃c
t ), (17)

∂µ̃c̃ = c̃d0 + t−
1
2λµLi− 1

2
(−e

µ̃−µ̃c
t ). (18)
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Where the constants are given by

c̃0 =
2
π
b1/2 − 2

π2
b+

2
π3
b3/2, λ =

√
2

π3/2
b1/2 − 5

√
2

π5/2
b+

9
√

2
π7/2

b3/2 − 2
√

2
3π3/2

b3/2,

cd0 =
2
π
b−1/2 +

6
π2

+
12
π3
b1/2, λµ =

√
2
π
b1/2 − 9

√
2

π5/2
b.

In general, at quantum criticality, the above results can be cast into the universal scaling forms

c̃ = c̃0 + λt(d/z)+1−(1/νz)F
(
µ̃− µ̃c

t1/νz

)
, (19)

∂µ̃c̃ = c̃d0 + λµt
(d/z)+1−(2/νz)G

(
µ̃− µ̃c

t1/νz

)
, (20)

where the scaling functions read off the critical dynamic exponent z = 2, correlation exponent ν = 1/2 for contact
and its derivatives. In the above equations c̃0,d0, λ and λµ are constants. They are independent of the temperature.
F(x), G(x) are universal dimensionless scaling functions. Despite the analytic results were derived for the strong
atrractive case, the criticality is avaliable for all interaction strength. This nature is numerically confirmed in the
main paper.

F-PP: From the phase F to the phase PP, the critical point is hc = 1 + 2 (µ̃+ h/2)
(

1− 2
√

2
3π (µ̃+ h/2)

1
2

)
. Near the

critical point we have

Ãu ≈ (h− hc) /2 + α1, Ãb ≈ β (h− hc) , (21)

where α1 =
[

3
√

2
4 π (µ̃+ 1/2)

] 2
3 − 16

3
√

2π
(µ̃+ 1/2)

3
2 and β = 1√

2π

[
3
√

2π (2µ̃+ 1)
] 1

3 . With the help of these function,
we obtain

∂hc̃ = t−
1
2 Li− 1

2

(
−e

β(h−hc)
t

)( √2
π3/2

α
1/2
1 − 2

π5/2
α1 −

2
√

2
3π3/2

α
3/2
1

)
(22)

P-PP: From the phase P to the phase PP , the critical point is hc = −2µ̃+ 16
√

2
3π (µ̃+ 1/2)

3
2 . Near the critical point

we have Ãu ≈ (h− hc) /2, Ãb ≈ α where α = 2µ̃+ 1− 2
3π (2µ̃+ 1)

3
2 . We obtain

∂hc̃ = t−
1
2 Li− 1

2

(
−e

h−hc
2t

)( 1√
2π

3
2
α

1
2 − 5

2
√

2π
5
2
α− 2

√
2

3π
3
2
α

3
2 +

9√
2π

7
2
α

7
2

)
. (23)

The above result of the scaling function in term of h can be also cast into the universal form

∂h̃c̃ = c̃h0 + λhT
(d/z)+1−(2/νz)K

(
h− hc

t1/νz

)
. (24)

Here c̃h0 and λh are constant.
Supplementary Figure 3 shows divergent behaviours of contact near the phase transitions P-PP and PP-F driven

by the magnetic field h, see supplementary equation (14). Moreover, contact and its derivatives with respect to h at
different temperatures must intersect at the critical point. This feature can be used to map out the phase boundaries
from the trapped gas at nite temperatures. Supplementary Figure 4 shows the scaling behaviour described by
Supplementary equations (29), (30) and (31).
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