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This article reviews theoretical and experimental developments for one-dimensional Fermi gases.

Specifically, the experimentally realized two-component delta-function interacting Fermi gas—the

Gaudin-Yang model—and its generalizations to multicomponent Fermi systems with larger spin

symmetries is discussed. The exact results obtained for Bethe ansatz integrable models of this kind

enable the study of the nature and microscopic origin of a wide range of quantum many-body

phenomena driven by spin population imbalance, dynamical interactions, and magnetic fields. This

physics includes Bardeen-Cooper-Schrieffer-like pairing, Tomonaga-Luttinger liquids, spin-charge

separation, Fulde-Ferrel-Larkin-Ovchinnikov-like pair correlations, quantum criticality and scaling,

polarons, and the few-body physics of the trimer state (trions). The fascinating interplay between

exactly solved models and experimental developments in one dimension promises to yield further

insight into the exciting and fundamental physics of interacting Fermi systems.
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I. INTRODUCTION

Fundamental quantum many-body systems involve the
interaction of bosonic and/or fermionic particles. The spin
of a particle makes it behave very differently at ultracold
temperatures below the degeneracy temperature. There are
thus fundamental differences between the properties of bo-
sons and fermions. However, as bosons are not subject to the
Pauli exclusion principle, they can collapse under suitable
conditions into the same quantum ground state, the Bose-
Einstein condensate (BEC). Remarkably, even a small attrac-
tion between two fermions with opposite-spin states and
momentum can lead to the formation of a Bardeen-Cooper-
Schrieffer (BCS) pair that has a bosonic nature. Such BCS
pairs can undergo the phenomenon of BEC as temperature
tends to absolute zero. Over the past few decades, experi-
mental achievements in trapping and cooling atomic gases
have revealed the beautiful and subtle physics of the quantum
world of ultracold atoms; see recent reviews by Dalfovo et al.
(1999), Leggett (2001), Regal and Jin (2006), Lewenstein
et al. (2007), Bloch, Dalibard, and Zweger (2008), Giorgini,
Pitaevskii, and Stringari (2008), Zhai (2009), Chin et al.
(2010), and Bloch, Dalibard, and Nascimbéne (2012).

In particular, recent experiments on ultracold bosonic and
fermionic atoms confined to one dimension (1D) have provided
a better understanding of the quantum statistical and dynamical

effects in quantum many-body systems (Yurovsky, Olshanii,
and Weiss, 2008; Cazalilla et al., 2011). These atomic wave-
guide particles are tightly confined in two transverse directions
and weakly confined in the axial direction. The transverse
excitations are fully suppressed by the tight confinement. As
a result the trapped atoms can be effectively characterized by a
quasi-1D system; see Fig. 1. The effective 1D interparticle
potential can be controlled in the whole interaction regime. In
such a way, the 1D many-body systems ultimately relate to
previously considered exactly solved models of interacting
bosons and fermions. This has led to a fascinating interplay
between exactly solved models and experimental develop-
ments in 1D. Inspired by these developments, the study of
integrable models has undergone a renaissance over the
past decade. Their study has become crucial to exploring and
understanding the physics of quantum many-body systems.

A. Exactly solved models

1. The virtuoso triumphs of the Bethe ansatz

The study of Bethe ansatz solvable models began when
Bethe (1931) introduced a particular form of wave function—
the Bethe ansatz (BA)—to obtain the energy eigenspectrum
of the 1D Heisenberg spin chain. After lying in obscurity for
decades, the BA emerged to underpin a diverse range of
physical problems, from superconductors to string theory;
see, e.g., Batchelor (2007). For such exactly solved models,
the energy eigenspectrum of the model Hamiltonian is ob-
tained exactly in terms of the BA equations, from which
physical properties can be derived via mathematical analysis.
From 1931 to the early 1960s there were only a handful of
papers on the BA, treating the passage to the thermodynamic
limit and the extension to the anisotropic XXZ Heisenberg

FIG. 1 (color online). Experimental confinement of two-

component ultracold 6Li atoms trapped in an array of 1D tubes

(Liao et al., 2010). The system has spin population imbalance

caused by a difference in the number of spin-up and spin-down

atoms. From Bloch, 2010.
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spin chain (Hulthén, 1938; Orbach, 1959; Walker, 1959; des

Cloizeaux and Pearson, 1962; Griffiths, 1964). Yang and

Yang (1966a) coined the term Bethe’s hypothesis and proved

that Bethe’s solution was indeed the ground state of the XXZ
spin chain (Yang and Yang, 1966a, 1966b, 1966c).

The next development was the exact solution of the

1D Bose gas with delta-function interaction by Lieb and

Liniger (1963), which continues to have a tremendous

impact in quantum statistical mechanics (Cazalilla et al.,

2011). They diagonalized the Hamiltonian and derived the

ground state energy of the model. This study was further

extended to the excitations above the ground state (Lieb,

1963). McGuire (1964) considered the model in the context

of quantum many-body scattering in which the condition of

nondiffractive scattering appeared.
Developments for the exact solution of the 1D Fermi gas

with delta-function interaction (Gaudin, 1967a, 1967b; Yang,

1967) are discussed in Sec. I.A.2. A key point is Yang’s

observation (Yang, 1967) that a generalized Bethe hypothesis

works for the fermion problem, subject to a set of cubic

equations being satisfied. This equation has since been re-

ferred to as the Yang-Baxter equation (YBE) after the name

was coined by Takhtadzhan and Faddeev (1979). Baxter’s

contribution was to independently show that such relations

also appear as conditions for commuting transfer matrices

in two-dimensional lattice models in statistical mechanics

(Baxter, 1972a, 1982). Moreover, the YBE was seen as a

relation which can be solved to obtain new exactly solved

models. The YBE thus became celebrated as the master key

to integrability (Au-Yang and Perk, 1989).
The study of Yang-Baxter integrable models flourished in

the 1970s, 1980s, and 1990s in the Canberra, St. Petersburg,

Stony Brook, and Kyoto schools, with far reaching implica-

tions in both physics and mathematics. During this period the

YBE emerged as the underlying structure behind the

solvability of a number of quantum mechanical models. In

addition to the XXZ spin chain, examples include the XYZ
spin chain (Baxter, 1972b), the t-J model at supersymmetric

coupling (Essler and Korepin, 1992; Foerster and Karowski,

1993a, 1993b) and the Hubbard model (Lieb and Wu, 1968;

Shiba, 1972; Shastry, 1986a, 1986b; Kawakami, Usuki, and

Okiji, 1989; Frahm and Korepin, 1990, 1991; Ogata and

Shiba, 1990; Essler et al., 2005). Three collections of key

papers have been published (Jimbo, 1990; Mattis, 1993;

Korepin and Essler, 1994).
Further examples are strongly correlated electron systems

(Tsvelik, 1995; Takahashi, 1999; Giamarchi, 2004;

Schollwöck, 2004), spin-exchange interaction (Montorsi,

1992; Sutherland, 2004; Essler et al., 2005), Kondo physics

of quantum impurities coupled to conduction electrons in

equilibrium (Andrei, Furuya, and Lowenstein, 1983;

Tsvelik and Wiegmann, 1983) and out of equilibrium

(Mehta and Andrei, 2006; Doyon, 2007; Nishino and

Hatano, 2007; Nishino, Imamura, and Hatano, 2009), the

BCS model (Richardson, 1963a, 1963b, 1965; Richardson

and Sherman, 1964; Cambiaggio, Rivas, and Saraceno, 1997;

von Delft and Ralph, 2001; Links et al., 2003; Dukelsky,

Pittel, and Sierra, 2004; Dunning and Links, 2004), models

with long-range interactions (Calogero, 1969; Sutherland,

1971; Gaudin, 1976; Haldane, 1988; Shastry, 1988), two

Josephson coupled BECs (Zhou et al., 2002; Zhou, Links,

McKenzie, and Guan, 2003), a BCS-to-BEC crossover (Ortiz

and Dukelsky, 2005), atomic-molecular BECs (Zhou, Links,

Gould, and Mckenzie, 2003; Foerster and Ragoucy, 2007),

and quantum degenerate gases of ultracold atoms (Korepin,

Bogoliubov, and Izergin, 1993; Pethick and Smith, 2008;

Yurovsky, Olshanii, and Weiss, 2008; Cazalilla et al., 2011).
A significant development in the theory of quantum inte-

grable systems is the algebraic BA (Sklyanin, Takhtadzhyan,

and Faddeev, 1979; Kulish and Sklyanin, 1982; Faddeev,

1984), essential to the so-called quantum inverse scattering

method (QISM), a quantized version of the classical inverse

scattering method. The QISM gives a unified description of

the exact solution of quantum integrable models. It provides a

framework to systematically construct and solve quantum

many-body systems (Thacker, 1981; Korepin, Bogoliubov,

and Izergin, 1993; Takahashi, 1999; Essler et al., 2005).
Other related threads are the quantum transfer matrix

(QTM) (Suzuki, 1985; Destri and de Vega, 1992; Klümper,

1992) and T systems (Kuniba, Nakanishi, and Suzuki, 1994a,

1994b, 2011) from which one can derive temperature-

dependent properties in an exact nonperturbative fashion.

Applications of this approach include the Heisenberg model

(Shiroishi and Takahashi, 2002), higher-spin chains (Tsuboi,

2003, 2004), and integrable quantum spin ladders (Batchelor

et al., 2003, 2004, 2007; Batchelor, Guan, and Oelkers, 2004).

T systems and integrability in general also play a fundamental

role in the gauge and string theories of high energy physics

(Kuniba, Nakanishi, and Suzuki, 2011; Beisert et al., 2012).
Yang-Baxter integrability has also played a crucial role in

initiating and inspiring progress in mathematics, particularly

to the theory of knots, links, and braids (Jones, 1985;

Kauffman, 1987; Wadati, Deguchi, and Akutsu, 1989; Wu,

1992; Yang and Ge, 2006) and the development of quantum

groups and representation theory (Chari and Pressley, 1994;

Gómez, Ruiz-Altaba, and Sierra, 1996).

2. Fermions in 1D: A historical overview

In the mid-1960s many physicists worked on extending the

results obtained by Lieb and Liniger (1963) and McGuire

(1964) for 1D bosons with delta-function interaction to the

problem of 1D fermions. McGuire (1965, 1966) solved the

eigenvalue problem of N � 1 fermions of the same spin and

one fermion of opposite spin and studied the low-lying excited

states with repulsive and attractive potentials. The dynamics of

this one spin-down Fermi problem has been studied (McGuire,

1990). The problem of N � 2 fermions of the same spin with

two fermions of opposite spin was solved by Flicker and Lieb

(1967). A further step came when Gaudin (1967a, 1967b) and

Yang (1967) solved the general problem in terms of a nested

BA for arbitrary spin population imbalance.1 Gaudin derived

the ground state energy for the balanced (fully paired) case

for attractive interaction, pointing out that the result is equiva-

lent to that for repulsive bosons (Lieb and Liniger, 1963).

1Missing phase factors for the spin sector in Eq. (4c) of Gaudin

(1967a) were corrected in Gaudin (1967b). A thorough treatment of

the 1D Fermi problem can be found in Gaudin’s book on the Bethe

wave function (Gaudin, 1983).
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The delta-function interacting two-component Fermi gas is

commonly referred to as the Gaudin-Yang model.
Yang’s concise solution of the problem had a profound

impact. As already remarked, a key point in the solution is

that the matrix operators describing many-body scattering

can be factorized into two-body scattering matrices, provided

that a set of cubic equations—the Yang-Baxter equation—are

satisfied by the two-body scattering matrices. This in turn is

equivalent to no diffraction in the outgoing waves in three-

body scattering processes. In this sense Yang’s solution com-

pletes McGuire’s formulation of the scattering process in the

context of the 1D Bose gas. Indeed, the R matrix obtained for

the 1D Bose gas is known as the simplest nontrivial solution

of the Yang-Baxter equation (Jimbo, 1989).
The solution of the 1D Fermi problem triggered a series of

further breakthroughs.Yang (1968) obtained theSmatrix of the

delta-function interacting many-body problem for Boltzmann

statistics (Gu and Yang, 1989). The exact solution of the 1D

Fermi gas with higher-spin symmetry was obtained by

Sutherland (1968, 1975). The 1D Hubbard model solved by

Lieb and Wu (1968) is a fundamental model in the theory of

strongly correlated electron systems. Its solution is a significant

example of the factorization condition (the YBE) in which the

quasimomenta of particles k are replaced by sink. TheLieb-Wu

solution thus gives a similar set of integral equations as Yang’s

Fredholm equations for the continuum gas. This exactly solved

model has been extensively studied in the literature. The exact

results for the Hubbard model not only provide the essential

physics of 1D strongly correlated electronic systems (Ha, 1996;

Takahashi, 1999; Essler et al., 2005), but also are relevant to

phenomena in high Tc superconductivity. Indeed, the 1D

Hubbardmodel is an archetypical many-body system featuring

Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) pairing, universal

Tomonaga-Luttinger liquid (TLL) physics, spin-charge sepa-

ration, and quantum entanglement (Gu et al., 2004; Essler

et al., 2005; Larsson and Johannesson, 2005).
Although further study (Takahashi, 1970b; Yang, 1970) of

the 1D Fermi gas was initiated soon after its solution, it was

not until much later that this model began to receive more

attention (Astrakharchik et al., 2004; Fuchs, Recati, and

Zwerger, 2004; Tokatly, 2004; Iida and Wadati, 2005;

Batchelor et al., 2006a) as a result of the brilliant experimen-

tal progress in ultracold-atom physics. The fundamental

physics of the model is determined by the set of generalized

Fredholm integral equations obtained in the thermodynamic

limit. Takahashi (1970a) discussed the analyticity of the

Fredholm equations in the vanishing interaction limit. A

thorough study of the Fredholm equations for the Gaudin-

Yang model with attractive and repulsive interactions was

carried out (Guan et al., 2007; Iida and Wadati, 2007, 2008;

Wadati and Iida, 2007; Guan and Ma, 2012; Zhou, Xu, and

Ma, 2012). The numerical solution of the Fredholm equations

has also been discussed in the context of harmonic traps (Hu,

Liu, and Drummond, 2007; Orso, 2007; Colomé-Tatché,

2008; Kakashvili and Bolech, 2009; Ma and Yang, 2009,

2010a, 2010b). In particular, the eigenfunction has been

obtained explicitly for the Fermi gas in the infinitely strong

repulsion limit by using the hard-core contact boundary

condition (Girardeau, 1960) and group theoretical methods

(Guan et al., 2009; Ma et al., 2009).

The next major advance with implications for the 1D Fermi
problem was the solution of the finite temperature problem
for 1D bosons. Yang and Yang (1969) showed that the
thermodynamics of the Lieb-Liniger Bose gas can be
determined from the minimization conditions of the Gibbs
free energy subject to the BA equations. Takahashi went on to
make significant contributions to Yang and Yang’s grand
canonical approach to the thermodynamics of 1D integrable
models (Takahashi, 1971a, 1971b, 1972, 1973, 1974;
Takahashi and Suzuki, 1972).

Takahashi gave the general name of thermodynamic Bethe
ansatz (TBA) equations to the Yang-Yang type of equations for
the thermodynamics. He discovered spin-string patterns of the
BA equations in addition to those for the ground state of the
spin chain (Takahashi, 1971a). Using a similar spin-string
hypothesis, Gaudin (1971) studied the thermodynamics of the
Heisenberg-Ising chain. Lai (1971, 1973) independently
derived the TBA equations for spin-1=2 fermions in the repul-
sive regime. It turns out that Takahashi’s spin-string hypothesis
allows one to study the grand canonical ensemble for many 1D
many-body systems with internal degrees of freedom, e.g., the
1D Fermi gas (Takahashi, 1971b), the 1D Hubbard model
(Takahashi, 1972, 1974; Usuki, Kawakami, and Okiji, 1990),
the quantum sine-Gordonmodel (Fowler andZotos, 1981), and
the Kondo problem (Filyov, Tsvelick, and Wiegmann, 1981;
Lowenstein, 1981) among many other integrable models.

Building on Takahashi’s spin-string hypothesis, Schlottmann
derived the TBA equations for SUðNÞ fermions with repulsive
and attractive interactions (Schlottmann, 1993, 1994). TheYang-
Yang method has been revealed to be an elegant way to analyti-
cally access not only the thermodynamics, but also correlation
functions, quantum criticality, and TLL physics for a wide range
of low-dimensional quantum many-body systems (Ha, 1996;
Takahashi, 1999; Essler et al., 2005). The Yang-Yang thermo-
dynamics of the 1D Bose gas has been tested in recent experi-
ments (van Amerongen et al., 2008; Armijo et al., 2010, 2011;
Krüger et al., 2010; Stimming et al., 2010; Armijo, 2011;
Jacqmin et al., 2011; Sagi et al., 2012).

Recently, numerical schemes have been developed to solve
the TBA equations of the 1D two-component spinor Bose gas
with delta-function interaction (Caux, Klauser, and van den
Brink, 2009; Klauser and Caux, 2011). The QTM method has
also been applied to the thermodynamics of the 1D Bose and
Fermi gases with repulsive delta-function interaction
(Klümper and Patu, 2011; Patu and Klümper, 2013). The
Canberra group and their collaborators (Zhao et al., 2009;
Guan et al., 2010; He et al., 2010, 2011; Guan and Batchelor,
2011; Guan and Ho, 2011) developed an asymptotic method
to calculate the thermodynamics of strongly interacting
bosons and fermions in an analytic fashion using the
polylog function in the framework of the Yang-Yang and
Takahashi methods. This approach does away with the need
to numerically solve the TBA equations for these systems at
quantum criticality, where the temperature is very low and the
interparticle interaction is strong.

B. Renewed interest in 1D fermions

The renewed interest over the past decade in 1D fermions
has been on a number of related fronts. Here we give a brief
introductory outline of these developments.
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1. Novel BCS-pairing states

Quantum matter at low temperatures has already been seen
to exhibit some remarkable physical properties, such as
BEC and superfluidity. Fermionic quantum matter with mis-
matched Fermi surfaces has long been expected to exhibit
more exotic behavior than seen in conventional materials.
The two-component attractive Fermi gas is particularly inter-
esting due to its connection with the exotic pairing phase
(the FFLO state) involving BCS pairs with nonzero center-of-
mass momenta. In this phase, where the system is partially
polarized, the Fermi energies of spin-up and spin-down elec-
trons become unequal. Originally, Fulde and Ferrell (1964)
discovered that, under a strong external field, superconduct-
ing electron pairs have nonzero pairing momentum and spin
polarization. Larkin and Ovchinnikov (1965) found that the

formation of pairs of electrons with different momenta, i.e., ~k

and � ~kþ ~q with nonzero ~q, is energetically favored over

pairs of electrons with opposite momenta, i.e., ~k and � ~k,
when the separation between Fermi surfaces is sufficiently
large. Consequently, the density of spins and the supercon-
ducting order parameter become periodic functions of the
spatial coordinates.

Theoretical study of the FFLO state in 1D interacting
fermions was initiated by Yang (2001), who used bosoniza-
tion to study the pairing correlations. The FFLO-like pair
correlations and spin correlations for the attractive Hubbard
model were later investigated numerically by two groups
(Feiguin and Heidrich-Meisner, 2007; Tezuka and Ueda,
2008). Both groups showed the power-law decay of the
form npair / cosðkFFLOjxjÞ=jxj� for the pair correlation, with
spatial oscillations depending solely on the mismatch
kFFLO ¼ �ðn" � n#Þ of the Fermi surfaces. Thus the momen-

tum pair distribution has peaks at the mismatch of the Fermi
surfaces. The FFLO state has since been studied by various
methods: density-matrix renormalization group (DMRG)
(Lüscher, Noack, and Läuchli, 2008; Rizzi et al., 2008;
Tezuka and Ueda, 2010), quantum Monte Carlo (QMC)
(Batrouni et al., 2008; Baur, Shumway, and Mueller, 2010;
Wolak et al., 2010), mean-field theory, and other methods
(Liu, Hu, and Drummond, 2007, 2008b; Parish et al., 2007;
Zhao and Liu, 2008; Datta, 2009; Edge and Cooper, 2009,
2010; Pei, Dukelsky, and Nazarewicz, 2010; Devreese,
Klimin, and Tempere, 2011; Kajala, Massel, and Törmä,
2011; Chen and Gao, 2012).

Recently the asymptotic correlation functions and FFLO
signature were analytically studied using the dressed charge
formalism in the context of the Gaudin-Yang model (Lee and
Guan, 2011; Schlottmann and Zvyagin, 2012b). However,
convincing theoretical proof for the existence of the 1D
FFLO state in the expansion dynamics of the 1D polarized
Fermi gas after its sudden release from the longitudinal
confining potential is still rather elusive; see recent further
developments by Bolech et al. (2012), Dalmonte et al. (2012),
and Lu et al. (2012). So far the spatial oscillation nature of
FFLO pairing has not been experimentally confirmed.

2. Large-spin ultracold atomic fermions

It was shown (Ho and Yip, 1999; Yip and Ho, 1999) that
large-spin atomic fermions exhibit rich pairing structures and

collective modes in low-energy physics. Further progress

toward understanding many-body physics with large-spin

Fermi gases was made (Wu, Hu, and Zhang, 2003; Wu,

2005) on spin-3=2 systems which can be realized with
132Cs, 9Be, and 135Ba ultracold atoms (Wu, 2006). Such

systems exhibit a generic SO(5) symmetry [isomorphically,

Spð4Þ symmetry]. The spin-3=2 system with SU(4) symmetry

can exhibit a quartet state (four-body bound state). More

generally, ultracold atoms offer an exciting opportunity to

investigate spin-liquid behavior via trapped fermionic atoms

with large-spin symmetry (Honerkamp and Hofstetter, 2004;

Zhao, Ueda, and Wang, 2006; Zhou and Semenoff, 2006;

Cherng, Refael, and Demler, 2007; Rapp et al., 2007; Tu,

Zhang, and Yu, 2007; Zhai, 2007; Corboz et al., 2011;

Szirmai and Lewenstein, 2011; Krauser et al., 2012). The

trimer state (‘‘trions’’) consisting of fermionic 6Li atoms

in the three energetically lowest substates has been reported

(Huckans et al., 2009; Williams et al., 2009; Lompe et al.,

2010).
On the other hand, fermionic alkaline-earth atoms display

an exact SUðNÞ spin symmetry with N ¼ 2I þ 1, where I is
the nuclear spin (Cazalilla, Ho, and Ueda, 2009; Gorshkov

et al., 2010; Xu, 2010). Such fermionic systems with enlarged

SUðNÞ spin symmetry are expected to display a remarkable

diversity of new quantum phases and quantum critical phe-

nomena due to the existence of multiple charge bound states.

De Salvo et al. (2010) have reported quantum degeneracy in a

gas of ultracold fermionic 87Sr atoms with I ¼ 9=2 in an

optical dipole trap. An experiment by Taie et al. (2010)

dramatically realized the model of fermionic atoms with

SUð2Þ � SUð6Þ symmetry where electron spin decouples

from its nuclear spin I ¼ 5=2 for 173Yb together with atoms

of its spin-1=2 isotope. This group also successfully realized

the SU(6) Mott-insulator state with ultracold fermions of
173Yb atoms in a 3D optical lattice (Taie et al., 2012).

In the context of large-spin ultracold atomic fermions,

Lecheminant, Boulat, and Azaria (2005) considered 1D ultra-

cold atomic systems of fermions with general half-integer

spins. The instabilities of the BCS-pairing phase and molecu-

lar superfluid phase in these systems have been studied by a

low-energy approach. The low-energy physics and competing

orders in large-spin fermionic systems in a 1D lattice were

further investigated (Capponi et al., 2007; Azaria, Capponi,

and Lecheminant, 2009; Nonne et al., 2010, 2011). In this

scenario, a new class of integrable models of ultracold fermi-

ons and bosons with large-spin symmetries was found (Cao,

Jiang, and Wang, 2007; Jiang, Cao, and Wang, 2009, 2011).

They derived the BA solutions for spin-3=2 fermions with SO

(5) symmetry and the Spð2sþ 1Þ-invariant model of fermions.
From the integrable model perspective, the study of mul-

ticomponent attractive fermions was initiated long ago by

Takahashi (1970b) and Yang (1970). In light of ultracold

higher-spin atoms, Controzzi and Tsvelik (2006) proposed

an exact solution of a model describing the low-energy

physics of spin-3=2 fermionic atoms in a 1D lattice. The

exact results obtained from 1D many-body systems with

higher-spin symmetries provided insight into understanding

the few-body physics of trions (Guan et al., 2008; Liu, Hu,

and Drummond, 2008a; He et al., 2010), quartet states (four-

body charge bound states) (Guan et al., 2009; Schlottmann
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and Zvyagin, 2012a, 2012b, 2012c), and an arbitrary large-
spin-neutral bound state of different sizes (Schlottmann,
1993, 1994; Guan et al., 2010; Lee and Guan, 2011; Yang
and You, 2011; Yin, Guan, Batchelor, and Chen, 2011). The
study of critical phenomena and universal TLL physics in
low-dimensional ultracold atomic Fermi gases with large
pseudospin symmetries is a rapidly developing frontier in
ultracold-atom physics.

3. Quantum criticality of ultracold atoms

Quantum criticality describes a V-shaped phase of quan-
tum critical matter fanning out to finite temperatures from the
quantum critical point (QCP). It is associated with competi-
tion between the two distinct ground states near the QCP.
Near a QCP, the quantum critical behavior is characterized
by the energy gap �� ��z and a diverging length scale
�� j���cj��, where �c is the critical value of the driving
parameter �. The universality class of quantum criticality is
characterized by the dynamic critical exponent z and the
correlation exponent � (Wilson, 1975; Fisher et al., 1989;
Sachdev, 1999). The many-body system is expected to show
universal scaling behavior in the thermodynamic quantities at
quantum criticality due to the collective nature of many-body
effects. Thus a universal and scale-invariant description of the
system is expected through the power-law scaling of thermo-
dynamic properties. However, understanding the various as-
pects of quantum criticality in quantum systems represents a
major challenge to our knowledge of many-body physics
(Sondhi et al., 1997; Vojta, 2003; Coleman and Schofield,
2005; Löhneysen et al., 2007; Gegenwart, Si, and Steglich,
2008; Sachdev and Keimer, 2011).

Ultracold atoms have become the tool of choice to simulate
and test universal quantum critical phenomena. The study of
quantum criticality and finite-size scaling in trapped atomic
systems is thus attracting considerable interest (Kato et al.,
2008; Campostrini and Vicari, 2009, 2010a, 2010b; Pollet,
Prokof’ev, and Svistunov, 2010; S. Fang et al., 2011; Hazzard
and Mueller, 2011; Ceccarelli, Torrero, and Vicari, 2012).
The experimental study of critical behavior in a trapped Bose
gas was initiated by Donner et al. (2007). In particular,
significant experimental progress on quantum criticality and
quantum phase transitions in 2D Bose atomic gases has been
made (Gemelke et al., 2009; Huang et al., 2010, 2011;
Huang, Zhang, Gemelke, and Chin, 2011; Zhang et al.,
2011, 2012).

Some of the remarkable features of criticality in general
are the notions of universality class and symmetry. Using
integrable quantum field theory, Zamolodichikov (1989) was
able to show that the 2D Ising model in a magnetic field, or
equivalently the quantum Ising chain with a transverse field
(Henkel and Saleur, 1989), displays E8 symmetry close to
the critical point. Such exotic quantum symmetry in the
excitation spectrum was observed in a recent experiment in
the traditional setting of condensed matter physics (Coldea
et al., 2010).

Zhou and Ho (2010) proposed a precise theoretical scheme
for mapping out quantum criticality of ultracold atoms. In this
framework, exactly solvable models of ultracold atoms,
exhibiting quantum phase transitions, provide a rigorous
way to explore quantum criticality in many-body systems.

The equation of state has been obtained for a number of key
integrable models, allowing the exploration of TLL physics
and quantum criticality. These include the Gaudin-Yang
Fermi gas (Zhao et al., 2009; Guan and Ho, 2011; Yin,
Guan, Batchelor, and Chen, 2011), the Lieb-Liniger Bose
gas (Guan and Batchelor, 2011), the Fermi-Bose mixture
(Yin, Guan, Chen, and Batchelor, 2011), and the spin-1 spinor
Bose gas with antiferromagnetic spin–spin exchange interac-
tion (Kuhn et al., 2012a, 2012b). The exact results for the
scaling forms of thermodynamic properties in these systems
near the critical point illustrate the physical origin of quantum
criticality in many-body systems.

4. Experiments with ultracold atoms in 1D

Many remarkable 1D quantum phenomena have been
experimentally observed due to recent rapid progress in
material synthesis and tunable manipulation of ultracold
atoms. These developments have provided a better under-
standing of significant quantum statistical effects and strong
correlation effects in low-dimensional quantum many-body
systems. The observed results to date are seen to be in
excellent agreement with results obtained using the mathe-
matical methods and analysis of exactly solved models.
These include the experimental realization of the Tonks-
Girardeau gas (Kinoshita, Wenger, and Weiss, 2004;
Paredes et al., 2004) and a quantum Newton’s cradle, i.e., a
demonstration of out-of-equilibrium physics in arrays of
trapped 1D Bose gases (Kinoshita, Wenger, and Weiss,
2006) and quantum correlations (Tolra et al., 2004;
Kinoshita, Wenger, and Weiss, 2005; Betz et al., 2011;
Endres et al., 2011; Haller et al., 2011; Guarrera et al.,
2012). Haller et al. (2009) made a further experimental
breakthrough by realizing a stable highly excited gaslike
phase, called the super Tonks-Girardeau gas, in the strongly
attractive regime of bosonic cesium atoms.

The Yang-Yang thermodynamics and thermal fluctuations
of an ultracold Bose gas of 87Rb atoms were further tested in a
series of publications (van Amerongen et al., 2008; Armijo
et al., 2010, 2011; Krüger et al., 2010; Stimming et al., 2010;
Armijo, 2011; Jacqmin et al., 2011, 2012; Sagi et al., 2012).
The universal low-energy physics was demonstrated as host-
ing a TLL (Haller, Hart et al., 2010; Blumenstein et al., 2011).

The experimental research using ultracold Fermi gases to
explore pairing phenomena in a 1D Fermi gas was first
reported by Moritz et al. (2005). In a major breakthrough
toward understanding the exotic pairing signature and quan-
tum phase diagram of the attractive Fermi gas, Liao et al.
(2010) measured the finite temperature density profiles of
trapped fermionic 6Li atoms; see Fig. 1. They confirmed the
key features of the T ¼ 0 phase diagram predicted from the
exact solution (Batchelor et al., 2006a; Feiguin and Heidrich-
Meisner, 2007; Guan et al., 2007; Hu, Liu, and Drummond,
2007; Iida and Wadati, 2007; Orso, 2007; Parish et al., 2007;
Kakashvili and Bolech, 2009).

C. Outline of this review

In light of these recent developments we review the BA
solution of the Gaudin-Yang model in Sec. II and discuss the
physical understanding of the solution in terms of BCS
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pairing, the polaron problem, molecule states, and the super
Tonks-Girardeau gas. In Sec. III we further discuss many-
body phenomena in the Gaudin-Yang model. Especially, we
discuss 1D fermions in a harmonic trap and review the
universal features of 1D interaction, including magnetism,
FFLO-like pairing, TLL physics, spin-charge separation, uni-
versal thermodynamics, and quantum criticality. In Sec. IV,
we review recent progress on mixtures of ultracold atoms and
the exact solution of the 1D Fermi-Bose mixture.

Section V reviews the exotic many-body physics of 1D
multicomponent interacting fermions, including the three-
component Fermi gas, the SUðNÞ invariant Fermi gases,
and spin-3=2 fermions with SO(5) symmetry. The discussion
in this section covers magnetism for systems of large-spin
fermions, trions, molecular states of different sizes, multi-
component TLL phases, universal low-temperature thermo-
dynamics, and critical behavior caused by population
imbalance. In Sec. VI, we focus on the asymptotics of various
relevant correlation functions for the Gaudin-Yang model and
multicomponent Fermi gases. The characteristics of the
FFLO-like pairing correlations and spin-charge separation
correlation functions are discussed in the framework of
conformal field theory (CFT).

The experimental breakthroughs with quasi-1D ultracold
atoms and tests of 1D many-body physics are reviewed
in Sec. VII. A brief conclusion and an outlook on future
developments are given in Sec. VIII.

II. THE GAUDIN-YANG MODEL

The Hamiltonian

H ¼ X
�¼#;"

Z
�y

�ðxÞ
�
� ℏ2

2m

d2

dx2
��� þ VðxÞ

�
��ðxÞdx

þ g1D
Z

�y
# ðxÞ�y

" ðxÞ�"ðxÞ�#ðxÞdx

� 1

2
H
Z
½�y

" ðxÞ�"ðxÞ ��y
# ðxÞ�#ðxÞ�dx (1)

describes a 1D 	 function interacting two-component
(spin-1=2) Fermi gas of N fermions with mass m and an
external magnetic field H constrained by periodic boundary
conditions to a line of length L. The function VðxÞ is the
trapping potential. The field operators �# and �" describe
the fermionic atoms in the states j #i and j "i, respectively. The
	-type interaction between fermions with opposite hyperfine
states preserves the spin states such that the Zeeman term in
the Hamiltonian (1) is a conserved quantity.

The experimental realization (Moritz et al., 2005; Liao
et al., 2010) of this system of interacting fermions is de-
scribed in Sec. VI. The coupling constant g1D ¼ ℏ2c=m,
where c ¼ �2=a1D can be tuned by Feshbach resonance
(Olshanii, 1998; Bergeman, Moore, and Olshanii, 2003).
For repulsive interaction c > 0 and for attractive interaction
c < 0. Where appropriate, we use units of ℏ ¼ 2m ¼ 1.
A dimensionless coupling constant 
 ¼ c=n is used to char-
acterize physical regimes, i.e., 
 � 1 for the strong coupling
regime and 
 � 1 for the weak coupling regime. Here n is
the linear number density.

A. Bethe ansatz solution

For a homogeneous gas, i.e., VðxÞ ¼ 0, the eigenvalue
problem for Hamiltonian (1) reduces to the 1D N-body
delta-function interaction problem

H ¼ � ℏ2

2m

XN
i¼1

@2

@x2i
þ g1D

X
1�i<j�N

	ðxi � xjÞ (2)

solved by Gaudin and Yang. Bethe’s hypothesis states that
the wave function of such a many-body system is a superpo-
sition of plane waves. In the domain 0< xQ1 < xQ2 < � � �
<xQN < L, the wave function is given by

c ¼ X
P

½P;Q� expiðkP1xQ1 þ � � � þ kPNxQNÞ; (3)

where both P ¼ P1; . . . ; PN and Q ¼ Q1; . . . ; QN are permu-
tations of the integers f1; 2; . . . ; Ng. The sum runs over all N!
permutations P. The N!	 N! coefficients ½P;Q� of the
exponentials can be arranged as an N!	 N! matrix. The
columns are denoted by N!	 N! dimensional vectors
�P1;...;PN

(Yang, 1967; Takahashi, 1999). For example, for

two fermions with one spin up and one spin down, the
wave function is written as

c ¼ �12ð½12; 12�eiðk1x1þk2x2Þ þ ½21; 12�eiðk2x1þk1x2 Þ
þ �21ð½12; 21�eiðk2x1þk1x2Þ þ ½21; 21�eiðk2x2þk1x1 Þ;

where �ij denotes the step function �ijðxj � xiÞ. A plane wave

repeatedly reflected from the hyperplanes xQi
¼ xQj

gives a

total of N! plane waves. The idea in setting up such an ansatz
is an attempt at a hypothetical solution followed by demon-
strating that it gives the eigenfunction of the many-body
problem, rather than solving the problem directly.

The derivative of the wave function is discontinuous
when two particles are infinitesimally close to one another.
This property can be derived by considering the eigenvalue
problem H c ¼ Ec in the center of mass coordinate X ¼
ðxQi

þ xQj
Þ=2 and the relative coordinate Y ¼ xQi

� xQj
of

the two adjacent particles involved. This discontinuity in the
first derivative of the wave function and the continuity
of the wave function at xQi

¼ xQj
give a two-body scattering

relation between the adjacent vector coefficients ����ij��� ¼
Yij
PjPi

����ji���.
The matrix operator Yab

ij is defined by

Yab
ij ¼ �iðki � kjÞPab þ cI

iðki � kjÞ � c
; (4)

where I is the identity and Pab is the permutation operator
acting on the vector ����ij���. Because of the Fermi statistics,

Pab ¼ �1 for all a and b. Yang denoted the unequal indices
a, b, and c in the three particle scattering process as the
interchanges with coordinates xa, xb, and xc under the per-
mutation Qa, Qb, and Qc. The consistency condition for
factorizing the many-body scattering matrix into the product
of two-body scattering matrices Yab

ij leads to the celebrated

YBE:

Yab
jk Y

bc
ik Y

ab
ij ¼ Ybc

ij Y
ab
ik Y

bc
jk ; (5)
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where Yab
ij Y

ab
ji ¼ 1. Defining the R matrix by Rij ¼ PijY

ij
ij

and spectral parameters u ¼ k2 � k1 and v ¼ k3 � k2 the
YBE is often written in the form

R12ðuÞR23ðuþvÞR12ðvÞ¼R23ðvÞR12ðuþvÞR23ðuÞ: (6)

Returning to solving the problem of N particles in
a periodic box of length L, the second step is to apply
the periodic boundary condition c ðx1; . . . ; xi; . . . ; xNÞ ¼
c ðx1; . . . ; xi þ L; . . . ; xNÞ on the wave function with period
L for every 1 � i � N. The two-column Young tableau
½2N# ; 1N"�N# � (Yang, 1967; Oelkers et al., 2006) encodes the
spin symmetry, where N" and N# are the numbers of fermions

in the hyperfine levels j "i and j #i such that N" 
 N#. This
gives the second eigenvalue problem

RiðkiÞAEðPjQÞ ¼ expðikiLÞAEðPjQÞ; (7)

where AEðPjQÞ is an abbreviation of the amplitude of the
wave function which provides the eigenvector of the N
operators Ri with i ¼ 1; . . . ; N:

RiðkiÞ ¼ Riþ1;iðkiþ1 � kiÞ � � �RN;iðkN � kiÞ
	 R1;iðk1 � kiÞ � � �Ri�1;iðki�1 � kiÞ: (8)

Using Bethe’s hypothesis again, Yang solved the eigen-
value problem (7) by the ansatz

AEðPjQÞ ¼ X
�P1���PM

Fð�P1
; y1Þ � � �Fð�PM

; yMÞ; (9)

where y1 < y2 � � �< yM are the coordinates of the down-spin
fermions and �1; . . . ; �M are the spin rapidities within the
function

Fð�; yÞ ¼ Yy�1

j¼1

kj � �þ ic0

kjþ1 � �� ic0
:

By the symmetry of the Young tableau ½2N# ; 1N"�N# �, the
vector AE describes a spin system with a number of N# spins
on an N-site lattice.

The generalized ansatz (9) plays an important role in
solving multicomponent many-body problems (Sutherland,
1968). Alternatively, the eigenvalue problem (7) can be
worked out in a straightforward way in terms of the QISM,
where the operator RiðkiÞ can be written in terms of the
quantum transfer matrix (Korepin, Bogoliubov, and Izergin,
1993; Ma, 1993; Li et al., 2003; Oelkers et al., 2006; Jiang,
Cao, and Wang, 2009). This approach was introduced in the
study of the 1D Hubbard model (Ramos and Martins, 1997;
Martins and Ramos, 1998; Essler et al., 2005).

The energy eigenspectrum is given in terms of the
quasimomenta fkig of the fermions via

E ¼ ℏ2

2m

XN
j¼1

k2j (10)

subject to the BA equations which in terms of the function

ebðxÞ ¼ xþ ibc=2

x� ibc=2

are

expðikiLÞ ¼
YN#

�¼1

e1ðki � ��Þ;

YN
j¼1

e1ð�� � kjÞ ¼ � YN#

¼1

e2ð�� � �Þ;
(11)

for i ¼ 1; 2; . . . ; N and � ¼ 1; 2; . . . ; N#. All wave numbers

ki are distinct and uniquely define the wave function (3)
(Gu and Yang, 1989).

The fundamental physics of the model is determined by the
BA equations (11). For repulsive interaction, the quasimo-
menta fkig are real, but the rapidities f��g are real only for the
ground state. The complex roots �� are the spin strings for
excited states. In the thermodynamic limit, i.e., L, N ! 1,
where N=L is finite, the BA equations (11) can be written as
generalized Fredholm equations

r1ðkÞ ¼ 1

2�
þ
Z B2

�B2

K1ðk� k0Þr2ðk0Þdk0;

r2ðkÞ ¼
Z B1

�B1

K1ðk� k0Þr1ðk0Þdk

�
Z B2

�B2

K2ðk� k0Þr2ðk0Þdk0; (12)

where the integration boundaries B1 and B2 are determined

by n ¼ N=L ¼ RB1�B1
r1ðkÞdk, n# ¼ N#=L ¼ RB2�B2

r2ðk0Þdk0.
In the above equations, the kernel function

K‘ðxÞ ¼ 1

2�

‘c

ð‘c=2Þ2 þ x2
:

The functions rmðkÞ denote the Bethe root distributions, with
r1ðkÞ the quasimomenta distribution function and r2ðkÞ the
spin rapidity parameter distribution function. The ground

state energy per unit length is given by E ¼ RB1�B1
k2r1ðkÞdk.

For the attractive regime, the quasimomenta fkig of fermi-
ons with different spins form two-body bound states, i.e., the
wave numbers are complex with ki ¼ �0

i � ic=2 in the

thermodynamic limit (Yang, 1970; Takahashi, 1971b). Here
i ¼ 1; . . . ; N#. The excess fermions have real quasimomenta

fkjg with j ¼ 1; . . . ; N � 2N#. In the thermodynamic limit,

the density of unpaired fermions �1ðkÞ and the density of
pairs �2ðkÞ satisfy the Fredholm equations

�1ðkÞ ¼ 1

2�
þ
Z A2

�A2

K1ðk� k0Þ�2ðk0Þdk0;

�2ðkÞ ¼ 1

�
þ
Z A1

�A1

K1ðk� k0Þ�1ðk0Þdk0

þ
Z A2

�A2

K2ðk� k0Þ�2ðk0Þdk0: (13)

The distribution �2ðkÞ coincides with the distribution function
of the real parts of the bound states. The linear densities are

defined by N=L¼2
RA2�A2

�2ðkÞdkþ
RA1�A1

�1ðkÞdk and N#=L ¼RA2�A2
�2ðkÞdk. The ground state energy per unit length is

given by E ¼ RA2�A2
ð2k2 � c2=2Þ�2ðkÞdkþ

RA1�A1
k2�1ðkÞdk.

In the context of magnetism, the magnetization per unit
length is defined by Mz ¼ ðn� 2n#Þ=2. By definition, the

ground state energy can be expressed as a function of total
particle density n and magnetization Mz. In the grand

1640 Xi-Wen Guan, Murray T. Batchelor, and Chaohong Lee: Fermi gases in one dimension: From Bethe . . .

Rev. Mod. Phys., Vol. 85, No. 4, October–December 2013



canonical ensemble, the magnetic field H and the chemical
potential � can be obtained via

H ¼ 2
@Eðn;MzÞ

@Mz ; � ¼ @Eðn;MzÞ
@n

; (14)

which have been used to work out the phase diagrams of the
attractive Fermi gas (Hu, Liu, and Drummond, 2007; Orso,
2007) and the repulsive Fermi gas (Colomé-Tatché, 2008;
Guan and Ma, 2012). We now turn to extracting such infor-
mation from both the discrete and continuum versions of the
BA solution.

B. Solutions to the discrete Bethe ansatz equations

The 1D Fermi gas (1) with spin population imbalance
exhibits an unconventional pairing order that presents a major
subtlety ofmany-body correlations in theGaudin-Yangmodel.
Starting with the discrete BA equations (11), we review how
the exact solution enables us to precisely understand such
subtle many-body physics driven by the interaction of quan-
tum statistics and dynamics. In particular, we see that for the
weakly and strongly attractive coupling regimes 1D interact-
ing fermions give significantly different phenomena: weakly
bound BCS-like pairs versus tightly bound molecules.

1. BCS-like pairing and tightly bound molecules

For weakly attractive interaction, i.e., Ljcj � 1, two fer-
mions with spin up and spin down form a weakly bound pair
with a small binding energy �b ¼ �ℏ2jcj=mL, where the
two-body binding energy is less than the kinetic energy
(Batchelor et al., 2006a). The complex conjugate pair leads
to an exponential decay of the wave function with a factor
e�jcjjxi�xjj=2. Thus the balanced case has a BCS-like fully
paired state where the size of the Cooper pairs is much larger
than the mean average distance between the fermions. In this
weakly attractive regime, the energy gap separating the first
triplet excited state from the ground state is found to have

an asymptotic behavior � � 2n2
ffiffiffiffiffiffiffiffiffiffi
�j
jp

expð��2=2j
jÞ as
j
j ! 0 (Krivnov and Ovchinnikov, 1975; Fuchs, Recati,
and Zwerger, 2004). In fact, the BA equations (11) for
weak attraction give an explicit relation H � ðℏ2n2=2mÞ	
ð2�2mz þ 4j
jmzÞ between the external field and magnetiza-
tion in the thermodynamic limit. The lower critical field gives
the energy gap at mz ¼ 0. This relation indicates a vanishing
energy gap � ¼ Hc ! 0 for 
 ! 0. Here the magnetization
is defined bymz :¼ Mz=n ¼ ðN" � N#Þ=2N (Iida and Wadati,

2007; He et al., 2009).
For a polarized gas with weak attraction, Fermi statistics

lead to segmentation in quasimomentum space, i.e., the
excess fermions are located at the two outer wings in quasi-
momentum space; see Fig. 2. For a finite-size system with
arbitrary polarization P ¼ ðN" � N#Þ=N, the BA equations

(11) determine N# weakly bound BCS pairs with kp� � �� �
i
ffiffiffiffiffiffiffiffiffiffiffiffijcj=Lp

and N � 2N# unpaired fermions with real ki
(Batchelor et al., 2006b). In this case, f��g and fkjg are

symmetrically distributed around zero in the quasimomentum
parameter space; see Fig. 2.

Assuming that N# is odd andN is even, the first few leading

orders of the positive roots f��g and fkjg are determined by

the equations

kj �
2nj�

L
þ c

Lkj
þ c

L

XðM#�1Þ=2

�¼1

�
2kj

k2j � �2
�

�
;

�� � 2n��

L
þ 3c

2L��

þ c

L

XðM#�1Þ=2

 ¼ 1

� � 

�
2��

�2
� � �2



�

þ c

2L

XðN�2M#Þ=2

j¼1

�
2��

�2
� � k2j

�
; (15)

where nj¼ðM#þ1Þ=2;ðMþ3Þ=2;...;ðN�M#�1Þ=2, and

n�¼1;2;...;M#=2. This case � ¼  is excluded in Eq. (15).

The root patterns reveal the cooperative nature of many-
body effects, i.e., an individual quasimomentum depends on
that of all the particles. Here the momenta of unpaired
fermions and bound pairs depend on the scattering energies
between pair and between paired and unpaired fermions.
This indicates that the quantum statistics of the weakly
interacting fermions is mutual according to exclusion statis-
tics (Haldane, 1991). From Eq. (15), the ground state energy
per unit length is given by (Batchelor et al., 2006b)

E

L
¼ 1

3
n3"�

2 þ 1

3
n3#�

2 þ 2cn"n# þOðc2Þ: (16)

Here the ground state energy (16) is also valid for weakly
repulsive interaction, i.e., for Lc � 1. This leading order
correction to the interaction energy indicates a mean-field
effect.

On the other hand, for strong attraction, i.e., Ljcj � 1
(or c � kF), the discrete BA equations (11) give the root
patterns kbi � �i � i 12 c for bound pairs and real kuj for un-

paired fermions (Yang, 1970; Takahashi, 1971b). Here i ¼
1; . . . ; N# and j ¼ 1; . . . ; N1, the number of unpaired fermions

N1 ¼ N � 2N#. The binding energy "b ¼ �c2=2 is the larg-

est energy scale than the kinetic energies of pairs or excess
fermions. For a strong attraction [up to order Oð1=c3Þ], N
fermions have root patterns (Batchelor et al., 2006b)

ku � ð2nu þ 1Þ�
L

�u; � � ð2nb þ 1Þ�
2L

�b;

where the effective statistical parameters are given by

�b � 1

2

�
1� 2N � 2N#

Ljcj
��1

; �u �
�
1� 4N#

Ljcj
��1

;

FIG. 2 (color online). Schematic BA root configurations for pair-

ing and depairing in the Gaudin-Yang model. For weakly attractive

interaction, the unpaired roots sit in the outer wings due to Fermi

statistics. For strongly attractive interaction, the unpaired roots can

penetrate into the central region, occupied by the bound pairs

(Batchelor et al., 2006b; Iida and Wadati, 2007).
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and nu ¼ �N1=2;�N1=2þ 1; . . . ; N1=2� 1 with nb ¼
�N#=2;�N#=2þ 1; . . . ; N#=2� 1. In this strong attraction

limit, the ground state energy per unit length is given by
E=L ¼ Eu

0 þ 2Eb
0 þ n#"b, where the energies of excess

fermions and pairs are given by

Eu
0 ¼ 1

3n
3
1�

2�2
u; Eb

0 ¼ 1
3n

3
2�

2�2
b: (17)

The bound states behave like hard-core bosons which can
be viewed as ideal particles with fractional exclusion statis-
tics. However, the bound pairs have tails and they interfere
with each other. It is impossible to separate the intermolecular
forces from the interference between molecules and single
fermions. From this explicit form of the ground state energy,
we see that for n# � x ¼ n" � n# the single atoms are

repelled by the molecules, i.e.,

Eðn#; xÞ � E0 � 1

6
n3#�

2

�
4x

jcj þ
12xðxþ n#Þ

c2

�
> 0: (18)

Here E0 is the ground state energy per unit length of the
balanced gas. This result indicates that the single atoms are
repelled by the molecules on the tightly bound dimer limit.
The atom-dimer scattering problem of three fermions in a
quasi-one-dimensional trap has been studied (Mora et al.,
2004; Mora, Egger, and Gogolin, 2005).

2. Highly polarized fermions: Polaron versus molecule

In higher dimensions, a spin-down fermion immersed in a
fully polarized spin-up Fermi sea gives rise to the quasipar-
ticle phenomenon called Fermi polaron (Combescot et al.,
2007; Combescot and Giraud, 2008; Prokof’ev and
Svistunov, 2008a, 2008b; Bruun and Massignan, 2010;
Klawunn and Recati, 2011; Mathy, Parish, and Huse, 2011;
Parish, 2011; Schmidt and Enss, 2011). The Fermi polaron is
a spin-down impurity fermion dressed by the surrounding
scattered fermions in the spin-up Fermi sea. In particular,
recent observations of Fermi polarons in a 3D or 2D tunable
Fermi liquid of ultracold atoms (Nascimbène et al., 2009;
Schirotzek et al., 2009; Kohstall et al., 2012; Koschorreck
et al., 2012) provide insightful understanding of quasiparticle
physics in many-body systems. For an attractive polaron, with
increasing attraction, the single spin-down fermion undergoes
a polaron-molecule transition in the fermionic medium
(Nascimbène et al., 2009; Schirotzek et al., 2009).

For repulsive interaction, theoretical studies suggested the
existence of such novel quasiparticles—repulsive polarons
(Pilati et al., 2010; Massignan and Bruun, 2011; Schmidt
and Enss, 2011; Ngampruetikorn, Levinsen, and Parish, 2012;
Schmidt et al., 2012). The properties of repulsive polarons,
such as the energy, lifetime, and quasiparticle residue, give a
fundamental understanding of the coherent nature of the
quasiparticle. The repulsive polaron is metastable and
eventually decays to either a molecule state or an attractive
polaron with particle-hole excitations in the majority Fermi
sea. This quasiparticle phenomenon was experimentally ob-
served by a magnetically tuned Feshbach resonance on the
BEC side with positive scattering length (Kohstall et al.,
2012; Koschorreck et al., 2012).

So far most studies concerning the first-order nature of the
polaron-molecule transition in a 3D fermionic medium

(Combescot et al., 2007; Combescot and Giraud, 2008;
Bruun and Massignan, 2010; Mathy, Parish, and Huse,
2011) involve a variational ansatz with some approximations
that are ultimately not justified in low dimensions (Giraud
and Combescot, 2009; Parish, 2011). It is generally accepted
that quasiparticle excitations actually do not exist in 1D
systems due to the collective nature of the 1D many-body
effect. The elementary excitations in 1D are still eigenstates,
where all particles are involved in a low-energy nature.
Therefore, we cannot find a simple operator, acting on the
ground state, to get a quasiparticle excitation, unlike for
higher dimensional systems. But this does not rule out a
well-defined quasiparticle-like behavior, e.g., a polaron,
which is a typical example of the collective nature of the
1D many-body effect. The quantum impurity problem in 1D
trapped ultracold atoms has shed new insight on the collective
nature of particles (Palzer et al., 2009; Catani et al., 2012).

The BA solvable models are likely to provide a rigorous
treatment of polaronlike phenomena in different mediums
(McGuire, 1966; Leskinen et al., 2010; Guan, 2012; Li
et al., 2012). In particular, a 1D attractive polaronic phe-
nomenon does occur if one (or a few) spin-down fermion
(fermions) is (are) immersed into a large spin-up Fermi sea
(McGuire, 1966; Giraud and Combescot, 2009; Leskinen
et al., 2010; Klawunn and Recati, 2011; Parish, 2011;
Guan, 2012; Massel et al., 2012). The excitation energy of
a system with one spin-down fermion has a certain
momentum-dependent relation, which includes a mean-field
attractive binding energy plus a classical kinetic energy of
polaron with effective mass m; see Fig. 3.

McGuire (1965, 1966) studied the exact eigenvalue prob-
lem of N � 1 fermions of the same spin and one fermion of
the opposite spin. He calculated the energy shift caused by
this extra spin-down fermion by solving the equation azi þ
1= tanzi ¼ const for the quasimomentum ki ¼ 2zi=L with
i ¼ 1; . . . ; N and a ¼ 4=gL. Here g > 0 for an attractive
interaction strength. McGuire found a Hermitian conjugate
pair z1;2 ¼ �� i and N � 2 real roots zi. The energy is

given by E ¼ ð2=L2ÞPN
i¼1 z

2
i . This single impurity problem

was recently studied (Guan, 2012) by means of the BA

spin-up

spin-down
Polaron Molecule

FIG. 3 (color online). Schematic BA root configuration of polaron-

molecule crossover in the 1D attractive Fermi gas. The upper panel

shows the free fermion distribution. In the weakly attractive limit

(middle panel), the single impurity fermion dressed by the surround-

ing scattered spin-up fermions from the medium behave like a

polaron (dashed oval) with a mean-field binding energy and an

effective mass m � m. For strong attraction (lower panel), the

single impurity fermion binds with one spin-up fermion from the

Fermi sea to form a tightly bound molecule of a two-atom with a sole

molecule binding energy and an effective mass m � 2m.
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equations (11). For an attractive interaction, the quasimo-
menta k#;" ¼ p� i of a pair and N � 2 real roots fkig with
i ¼ 1; . . . ; N � 2 are determined by Eqs. (11) with N# ¼ 1. It
was found (Guan, 2012) that the imaginary part  in the pair
is determined by the equation

L ¼ tanh�1 jcj
2 þ c2=4

:

For an excited state with total momentum of the system q, the
spin-down fermion associated with the weakly bound pair in
the fully polarized Fermi sea thus has a nonzero momentum

p � q

��
1� 2jcj X

N"
2 �1

i¼1

1

Lðk2i � p2Þ
�

(19)

which depends on all individual momenta of the spin-up
fermions. This gives a collective signature of the 1D many-
body effect. Thus the energy shift is explicitly given by

Eðq;N;N# ¼ 1Þ � E"ðN"; 0Þ � �p�b þ ℏ2q2

2m (20)

which behaves like a polaron quasiparticle. Here the attrac-
tive mean-field binding energy of the polaron is given by
�p�b � �ð6=�2ÞeFj
j for weak attraction. The Fermi energy

is eF ¼ ðℏ2=2mÞð1=3Þn2�2. We see that this binding energy
depends solely on the Fermi energy of the medium and
interaction strength in 1D. In Eq. (20), the polaronlike state
has an effective massm � m½1þOðc2Þ�which is almost the
same as the actual mass of the fermions due to the decoupling
from the bound pair in the weak coupling limit. We point
out that the polaronlike state occurs only for few impurity
fermions immersed into a fully polarized Fermi sea.

For aweakly repulsive interaction and in the thermodynamic
limit, the low-energy physics of the 1D Fermi gas is described
by a spin-charge separation theory. The spin rapidity parame-
ters decouple from the quaismomenta of the fermions.
However, using the BA equations (11), a single spin-down
fermion immersed into the 1D fully polarized Fermi
sea with weak repulsion can form a repulsive Fermi
polaron, with energy of the form (20) and an effective mass
m � m½1þOðc2Þ�. But here the impurity fermion receives
a positive mean-field shift �p�b � ð6=�2ÞeFj
j from the

fermionic medium.
In the opposite limit, a spin-down fermion immersed into a

fully polarized spin-up medium with strong attraction, i.e.,
withLjcj � 1, the bound pair has k#;" ¼ p� i and theN � 2
real roots fkigwith i ¼ 1; . . . ; N � 2 are given by (Guan, 2012)

ki �
�
nj�

L
� 4p

Ljcj
��

1� 4

Ljcj
��1

; (21)

with nj ¼ �1;�3; . . . ;�ðN" � 1Þ. For an excited state with

total system momentum q, the relation between the center-of-
mass pair quasimomentum p and the total momentum of the
system q is given by

p � q

��
2

�
1� 2ðN" � 2Þ

Ljcj
��

;

which is independent of the individual quasimomenta of the
spin-up fermions. The energy shift is given by�E ¼ EM ��

with the chemical potential � ¼ n2�2, where the molecule
energy is given by

EM � Eb þ ℏ2q2

2m : (22)

The binding energy of the bound state is

Eb � ℏ2n2

2m

�
�
2

2
þ 8�2

3j
j
�

(23)

which tends to the binding energy of a sole molecule "b ¼
�ðℏ2=2mÞc2=2 in the strongly attractive regime Ljcj ! 1.
The effective mass of the molecule

m � 2m

�
1� 4

j
j
�

(24)

becomes twice the actual mass of the fermions in this limit.
From the shift energies (20) and (22), we see that as the
attractive interaction grows, the spin-down fermion binds
only with one spin-up fermion from the medium to gradually
form a tightly bound molecule. The polaron-molecule cross-
over is regarded as a change from a mean-field attractive
binding energy of a polaron with an effective massm ¼ m to
the binding energy of a single molecule with an effective
mass m ¼ 2m as the attraction grows from zero to infinity.
The nonequilibrium dynamics of an impurity in a 1D lattice
within a harmonic trap have been studied using numerical
methods and the BA solution (Massel et al., 2012). The
numerical simulation of an impurity injected into a 1D
quantum liquid has been reported (Knap et al., 2013).

C. Solutions in the thermodynamic limit

In Sec. II.B.2 we discussed the solutions to the discrete BA
equation (11) in the limits jcj ! 0, 1. They give rise to
different phenomena in the two extreme limits. Usually, the
many-body phenomena of interest refers to the physics of the
system in the thermodynamic limit, where N, L ! 1 keeping
N=L finite. This entails considering the solutions to the two
sets of Fredholm equations (12) and (13) for the repulsive and
attractive regimes.

1. BCS-BEC crossover and fermionic super

Tonks-Girardeau gas

In order to conceive the physical nature of the super Tonks-
Girardeau gas, we first recall the Lieb-Liniger Bose gas with
zero-range delta-function interaction, where the Tonks-
Girardeau gas was determined by a Fermi-Bose mapping
to an ideal Fermi gas (Girardeau, 1960). For a strong
attractive interaction, McGuire (1964) predicted that the
quasimomenta of the bosons are given in terms of a bound
state of N particles, with k�j � � 1

2 c½N � 2jþ 1� where

j ¼ 1; . . . ; N=2. In this case, the wave function is given by

�ðx1; . . . ; xNÞ � N exp

�
c

2

X
1�i<j�N

jxj � xij
�
; (25)

where N ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 1Þ!p
=
ffiffiffiffiffiffiffi
2�

p Þjcjðn�1Þ=2 is a normalization
constant. The energy of the McGuire cluster state is given
by E0 ¼ � 1

12 c
2NðN2 � 1Þ. However, if the interaction

strength is abruptly changed from strongly repulsive to
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strongly attractive, the highly excited gaslike state may be
metastable against this clusterlike state due to the Fermi
pressure inherited from the repulsive Tonks-Girardeau gas.
This gaslike state exhibits a more exclusive quantum statistics
than the free-Fermi gas and is called super Tonks-Girardeau
gas. The super Tonks-Girardeau gaslike state was first pre-
dicted by Astrakharchik et al. (2005) and further proved
by Batchelor et al. (2005b) using the exact BA solution
of the Lieb-Liniger Bose gas. Remarkably, such a highly
excited state was realized in a breakthrough experiment
(Haller et al., 2009).

The equally populated components in an attractive Fermi
gas give rise to physics related to the crossover between a
BCS superfluid and a BEC (Fuchs, Recati, and Zwerger, 2004;
Tokatly, 2004; Iida and Wadati, 2005; Wadati and Iida, 2007;
Chen, Cao, and Gu, 2010; Chen et al., 2010; Feiguin et al.,
2012). In this context, for a balanced attractive Fermi gas with
N# ¼ N=2, the discrete BA equations (11) reduce to

expð2i��LÞ ¼ � YN#

¼1

�� � � þ icF
�� � � � icF

; (26)

with cF ¼ �2=aF1D. This is equivalent to

expðikjLÞ ¼ �YNB

l¼1

kj � kl þ icB
kj � kl � icB

; (27)

with cB ¼ �2=aB1D for the Lieb-Liniger gas in the super

Tonks-Girardeau phase under the identification cB ¼ 2cF,
NB ¼ N=2, and mB ¼ 2mF (Wadati and Iida, 2007; Chen,
Cao, and Gu, 2010; Chen et al., 2010). Since the bound pair
formed by two fermions with opposite spin has a mass mB ¼
2mF, the M bound pairs are equivalently described by the
super Tonks-Girardeau phase of the interacting Bose gas
with effective 1D scattering length aB1D ¼ 1

2 a
F
1D. This relation

is also obtained by an exact mapping based on the two-body
scattering problem associatedwithBEC-BCS crossover (Mora
et al., 2005).

For the balanced Fermi gas, the binding energy is sub-
tracted from the energy that gives the energy of the bosonic
pairs of a two atom, with result

EF
0 ¼ Eþ N#�b ¼ ℏ2

2mF

XN#

�¼1

2�2
�:

The energy eigenvalues of the bosons are given by

E ¼ ℏ2

2mB

XNB

j¼1

k2j :

In this regard, the ground state of the balanced attractive
Fermi gas can be viewed as the fermionic super Tonks-
Girardeau gas (Chen, Cao, and Gu, 2010; Chen et al.,
2010). The identification between the balanced attractive
Fermi gas and the attractive Lieb-Liniger Bose gas suggests
an effective attraction between pairs.

In the thermodynamic limit, the BA equation (26) gives a
particular Fredholm equation which can be deduced from
Eq. (13), i.e.,

�2ðkÞ ¼ 1

�
þ
Z Q2

�Q2

K2ðk� k0Þ�2ðk0Þdk0; (28)

where the Fermi pair momentum Q2 is determined by n ¼
2
RQ2�Q2

�2ðkÞ. It turns out that (Iida and Wadati, 2005; Wadati

and Iida, 2007; Chen, Cao, and Gu, 2010) the reduced
Fredholm equation (28) maps to the Lieb-Liniger integral
equation for 1D spinless bosons on identifying mB ¼ 2mF,
NB ¼ NF=2, and 
B ¼ 4
F. For weak attraction, the ground
state is the BCS-like pairing state with a pairing correlation
length larger than the average interparticle spacing and the
energy is given by E ¼ 1

12n
3�2 � 1

2 n
2jcj þOðc2Þ. In particu-

lar, for strong attraction, the ground state of bound pairs
determined by Eq. (28) can be regarded as a particular super
Tonks-Girardeau gas of hard-core bosons (Chen, Cao, and
Gu, 2010). The distribution function of the pair density
plotted in Fig. 4 provides an understanding of the subtle
BEC-BCS crossover in the balanced Fermi gas. In the weak
coupling regime, the single quasimomentum essentially de-
pends on that of the other particles. This gives a signature of
mutual statistics (Wilczek, 1982; Aneziris, Balachandran, and
Sen, 1991; Haldane, 1991; Wu, 1994). However, in the limit
j
j ! 1, the quasimomentum distribution becomes an
equally spaced separation. This indicates free-Fermi nonmu-
tual statistics. Further study on the dimer-dimer scattering
properties in the confinement-induced-resonance has been
reported (Mora et al., 2005; Mora, Egger, and Gogolin,
2005); see also Feiguin et al. (2012).

Furthermore, it was demonstrated (Girardeau, 2010; Guan
and Chen, 2010) that another metastable highly excited gas-
like state without bound pairs in the strongly attractive regime
can be realized through a sudden switch of the interaction
from strongly repulsive to strongly attractive. In the limit
c ! �1, this gaslike state is still an eigenstate of the system
with the energy per particle

E � 1

3
n2�2

�
1þ 4 ln2

j
j þ 12 ln2


2

�
;

but it is a highly excited state. From the experimental point of
view, these different quantum states can be tested from
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FIG. 4. The normalized pair quasimomentum distribution function

fðqÞ for different values of interaction strength 
. The analytic

result for the distribution function matches the numerical solution.

The quasimomentum distribution indicates the fermionization from

mutual statistics to nonmutual generalized exclusion statistics as 

increases. From Iida and Wadati, 2005.
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measuring the frequencies of the lowest breathing mode from
the mean square radius of the 1D trapped gases in a harmonic
potential (Menotti and Stringari, 2002; Astrakharchik et al.,
2004), e.g., in the super Tonks-Girardeau Bose gas (Haller
et al., 2009). The low breathing mode featuring different
states of the strongly repulsive and attractive Fermi gas can
be analyzed via the local density approximation (LDA). The

lowest breathing mode is given by the mean square radius of
the trapped fermionic Tonks-Girardeau gas !2 ¼ �2hx2i=
ðdhx2i=d!2

xÞ; see Fig. 5. Here hx2i ¼ R
�ðxÞx2dx=N. The

frequency ratio !2=!2
x exhibits a peak which is a typical

characteristic of the super Tonks-Girardeau phase. Further
evidence for this fermionic super Tonks-Girardeau gaslike
state has been seen in the experimental observation of the
fermionization of two distinguishable fermions (Zürn et al.,
2012). It is also particularly interesting that a ferromagnetic
transition is likely to occur in 1D strongly interacting fermi-
ons across the resonance from infinite repulsion to finite
attraction (Cui and Ho, 2013a, 2013b).

2. Solutions to the Fredholm equations and analyticity

Despite the two sets of Fredholm integral equations (12)
and (13) for the homogeneous gas being derived long ago
(Yang, 1967, 1970; Takahashi, 1971b), their analytical studies
are still restricted to particular regimes, e.g., 
 � 1, j
j � 1,
and j
j � �1. The first few terms in the asymptotic expan-
sions of the ground state energy for the 1D attractive
Fermi gas for both the strong and weak coupling cases has
been calculated in terms of a power series (Iida and Wadati,
2005, 2007; Guan et al., 2007; He et al., 2009) and in terms
of Legendre polynomials (Zhou, Xu, and Ma, 2012). The
first few terms of the ground state energy have been derived
recently (Guan and Ma, 2012) by an asymptotic expansion for
(a) strong repulsion, (b) weak repulsion, (c) weak attraction,
and (d) strong attraction.

For strong repulsion, the ground state energy of the
Gaudin-Yang model is given by (Guan and Ma, 2012)

E

L
�
8><
>:

1
3n

3�2
h
1� 4 ln2


 þ 12ðln2Þ2

2 � 32ðln2Þ3


3 þ �2�ð3Þ

3

i
; for P ¼ 0;

1
3n

3�2
h
1� 8n#

c þ 48n2#
c2

� 1
c3

�
256n3# � 32

5 �
2n2n#

�i
; for P 
 0:5:

(29)

Here �ðzÞ is the Riemann zeta function. The leading order (1=
) correction was also found in Fuchs, Recati, and Zwerger
(2004) and Batchelor et al. (2006b). Figure 6 shows that this ground state energy is a good approximation for the balanced
and imbalanced Fermi gas with a strongly repulsive interaction.

For strong attraction, the ground state energy is given by E=L ¼ Eu
0 þ 2Eb

0 þ n#"b, where

Eu
0 �

ðn" � n#Þ3�2

3

�
1þ 8n#

jcj þ
48n2#
c2

� 8n#
15jcj3 ð12�

2ðn" � n#Þ2 � 480n2# þ 5n2#�
2Þ
�
; (30)

Eb
0 �

n3#�
2

6

�
1þ 2ð2n" � n#Þ

jcj þ 3ð2n" � n#Þ2
c2

� 4

15jcj3 ð180n#n
2
" þ 20�2n3" � 90n"n2#

� 22�2n3# þ 15n3# � 120n3" þ 63�2n2# n" � 60�2n#n2" Þ
�
:

(31)

This energy is highly accurate for arbitrary polarization as
can be seen in Fig. 6. The high precision of expansions for
the ground state energy of the attractive Fermi gas was also
studied (Iida and Wadati, 2007; He et al., 2009; Zhou, Xu,
and Ma, 2012).

In contrast to the strong coupling case, it is more difficult

to proceed with asymptotic expansion for the two sets of

Fredholm equations (12) and (13) at vanishing interaction

strength. In terms of the polarization P, the ground state

energy in weak attraction limit was found to be (Iida and
Wadati, 2007)

E

L
��2n3

12

	
ð1þ3P2Þ� 6

�2
ð1�P2Þj
j�B2


2



: (32)

The coefficient B2 is a complicated function obtained from
the power series expansions with respect to 
. However, it
contains divergent sums and the coefficients are singular as

FIG. 5 (color online). The square of the lowest breathing mode

frequency vs the ground state energy per unit length vs the rescaled

interaction strength a1D=!x. The quantum gases are trapped in a 1D

harmonic potential Vx ¼ 1
2m!2

xx
2. Here GS and FSTG stand for the

frequency ratio !2=!2
x for the ground state and fermionic super

Tonks-Girardeau gas, respectively. From Guan and Chen, 2010.
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 ! 0 (Iida and Wadati, 2007). So far only the leading order
correction to the interaction energy is mathematically
convincing and consistent with the result (16) obtained
from the discrete BA equations (11). Beyond the mean-field
term, finding the next leading term in the ground state energy
is still an open problem. For zero polarization, Krivnov and
Ovchinnikov (1975) found

Oðc2Þ � �
2n3

4�2
ðlnj
jÞ2

obtained from the 1D Hubbard model in a dilute limit. Iida
and Wadati (2007) found the term Oðc2Þ � �
2n3=12. This
difference reveals a subtlety of the vanishing interaction limit,
i.e., the two limits c ! 0 and the thermodynamic limit
(N, L ! 1 with N=L finite) do not commute. In fact, the
ground state energy (32) counts only the density distributions
away from the integration boundaries in the Fredholm equa-
tions (12) and (13), i.e., jBi � kj � c and jAi � kj � c with
i ¼ 1, 2. At the integration edges, these distribution functions
are not analytically extractable as 
 ! 0 (Guan andMa, 2012).

The analyticity of the ground state energy at 
 ¼ 0 is still
in question (Takahashi, 1970c; Guan and Ma, 2012).
Takahashi showed that (a) the ground state energy function
fðn"; n#; cÞ is analytic on the real c axis when n" � n#,
and (b) fðn"; n#; cÞ is analytic on the real c axis except for

c ¼ 0 when n" ¼ n#. However, the Fredhom equations for

weakly repulsive and attractive interactions are identical
as long as B1 > B2 and A1 > A2, where the integration
boundaries match each other between the two sides
(Guan and Ma, 2012). In this identical region, the asymptotic
expansions of the energies of the repulsive and attractive
fermions are identical to all orders as c ! 0. But the identity
of the asymptotic expansions may not mean that the energy
analytically connects due to the divergence of the Fredholm
equations in the region c ! i0.

III. MANY-BODY PHYSICS OF THE GAUDIN-YANG

MODEL

So far we have discussed only the ground state properties
of the Gaudin-Yang model. We now survey the wide range of
fundamental many-body physics exhibited in the model.

A. 1D analog of the FFLO state and magnetism

The particularly interesting feature of the attractive Fermi
gas is the exotic FFLO-like pairing, where the system is
gapless with mismatched Fermi points between the two
Fermi seas. In the gapped phase, it is well understood
that the correlation function for the single-particle Green’s
function decays exponentially (Bogoliubov and Korepin,

1988, 1989, 1990) hc y
x;sc 1;si ! e�x=� with � ¼ vF=� and

s ¼" , # , whereas the singlet pair correlation function de-

cays as a power of distance, i.e., hc y
x;"c

y
x;#c 1;"c 1;#i ! x��.

Here � is the energy gap, and the critical exponents � and �
are both greater than zero. However, once the external field
exceeds the lower critical field, the system has a gapless
phase where both of these correlation functions decay as a
power of distance and the pairs lose their dominance. The
molecule and excess fermions form the polarized FFLO-like
pairing state, where the spatial oscillations of the pairing
correlation are caused by an imbalance in the densities of
spin-up and spin-down fermions, i.e., n" � n#. In Sec. VI,

we further discuss the pair and spin correlations with the
spatial oscillation signature in the context of conformal
field theory.

In terms of the polarization, the Gaudin-Yang model with
attractive interaction exhibits three quantum phases at zero
temperature: the fully paired phase which is a quasiconden-
sate with zero polarization, the fully polarized normal Fermi
gas with P ¼ 1, and the partially polarized FFLO-like phase
with polarization 0<P< 1; see the phase diagram in the
�-H plane and in the H-n plane (see Fig. 7). The two phase
diagrams describe the quantum phases in terms of the grand
canonical and canonical ensembles. The phase boundaries
in the two phase diagrams can be mapped onto each other
(Orso, 2007; Guan and Ho, 2011). In this gapless phase, the
magnetic properties can be exactly described by the external
field-magnetization relation

1
2H ¼ 1

2�b þ�u ��b; (33)

where �b ¼ �þ �b=2 and �u ¼ �þH=2 are given by
Eq. (14). This relation reveals an important energy transfer
relation among the binding energy, the variation of Fermi
surfaces, and the external field.

For fixed density and strong attraction, the paired phase
with magnetization Mz ¼ 0 is stable when the field H <Hc1,
where the lower critical field is given by

Hc1 � ℏ2n2

2m

�

2

2
� �2

8

�
1� 3

4j
j2 �
1

j
j3
��

: (34)

When the external field exceeds the upper critical field

Hc2 � ℏ2n2

2m

�

2

2
þ 2�2

�
1� 4

3j
j þ
16�2

15j
j3
��

; (35)

FIG. 6 (color online). The ground state energy as a function of


 ¼ cL=N in units of ℏ2N3=2mL2. The comparison between the

asymptotic solutions and numerical solutions of the Fredholm

equations for different polarization is shown. In the attractive

regime, the binding energy "b ¼ �c2=2 was subtracted. From

Guan and Ma, 2012.
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a phase transition from the FFLO-like phase into the normal
gas phase occurs; see Fig. 7. The lower critical field gives the
energy gap in the spin sector.

The magnetization can be obtained from Eq. (33); see
Fig. 8. It was found (Woynarovich and Penc, 1991; Guan
et al., 2007; Iida and Wadati, 2007; He et al., 2009) that in the
vicinity of the critical fields Hc1 and Hc2, the system exhibits
a linear field-dependent magnetization

Mz �
8><
>:

2ðH�Hc1Þ
n�2

�
1þ 2

j
j þ 11
2
2 þ 81��2

6j
j3
�
;

n
2

h
1� Hc2�H

4n2�2

�
1þ 4

j
j þ 12

2 � 16ð�2�6Þ

3j
j3
�i
;

(36)

with a finite susceptibility. For a fixed total number of
particles, or say in a canonical ensemble, the magnetic field
driven phase transitions in the 1D Fermi gases with an
attractive interaction are linear field dependent, which was
also found in the SUðNÞ attractive Fermi gas (Guan et al.,
2010; Lee, Guan, and Batchelor, 2011).

The magnetism of the attractive Fermi gases was dis-
cussed by Schlottmann (Schlottmann, 1993, 1994, 1997;
Schlottmann and Zvyagin, 2012a, 2012b). However, the argu-
ment that was made on the initial slope of the magnetization

in these papers (Schlottmann, 1993, 1994, 1997) does not
appear to be correct for a fixed total number of particles. The
reason has been discussed (Woynarovich, 1991): ‘‘The bound
pairs which have to be broken up to yield the particles with
uncompensated spins form a Fermi sea, their density of states
is finite at the Fermi level, and that keeps the initial suscep-
tibility finite.’’ It was also shown (Vekua, Matveenko, and
Shlyapnikov, 2009) that the curvature of free dispersion at the
Fermi points couples the spin and change modes and leads to
a linear critical behavior and finite susceptibility for a wide
range of models. They showed that when the magnetic field
H ! Hc, the magnetization mz � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H �Hc

p
for a fixed

chemical potential. However, for fixed density, the magneti-
zationmz � ðH �HcÞ=�vb

N asH ¼ Hc þ 0þ. This leads to a
finite onset susceptibility given by � ¼ 1=�vb

N with the pair

density stiffness vb
N ¼ vF=4 in the strong attraction limit


 ! 1. Here we further remark that for finitely strong
attraction the onset susceptibility � ¼ KðbÞ=�vb

N , where

KðbÞ �
�
1þ 3

j
j þ
33

4
2

�

is the Tomonaga-Luttinger liquid parameter at the critical
point and

vb
N ¼ vF

4

�
1� 2

j
j �
3

2
2

�

is the stiffness of bound pairs in the limit H ! Hc þ 0þ.
The magnetization in the Hubbard model with a half-filled

band gives rise to the square-root dependence on the field
(Takahashi, 1969), where low density solitons appearing in
the spin sector above the critical field behave like free fermions
(Japaridze and Nersesyan, 1978, 1981; Pokrosvsky and
Talapov, 1979). More rigorously speaking, the linear field-
dependent magnetization is clearly seen from the energy trans-
fer relation (33), where the effective chemical potentials
�u / ð2mzÞ2 and �b / ðn� 2mzÞ2. Thus the linear term mz

in Eq. (33) gives a finite susceptibility at the onset of
magnetization.
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FIG. 7 (color online). Upper panel: Phase diagram of the Gaudin-

Yangmodel in the�-H plane. The phase boundaries are obtained from

Eq. (14) in terms of the numerical solution of the BA equations (12).

FromOrso, 2007. Lower panel: Phase diagram of the model in theH-n
plane with j
j ¼ 10 and density n ¼ 1. The dashed lines denote the

two critical lines [Eqs. (34) and (35)]. The colored phases are obtained

by numerical solution of the energy magnetization (33). From He

et al., 2009.
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B. Fermions in a 1D harmonic trap

In experiments, 1D quantum atomic gases are prepared by
loading ultracold atoms in an anisotropic harmonic trap with
strong transverse confinement and weak longitudinal confine-
ment. In general, interacting many-body systems trapped in a
harmonic potential is a rather complicated problem. The
problem of the 1D Hamiltonian (1) trapped in a harmonic
potential 1

2m!2
xx

2 has been studied by various methods

(Girardeau and Minguzzi, 2007; Hu, Liu, and Drummond,
2007; Orso, 2007; Colomé-Tatché, 2008; Gao and Asgari,
2008; Ma and Yang, 2009; Yang, 2009; Girardeau, 2010; Yin,
Guan, Chen, and Batchelor, 2011; Cui, 2012b). For N ¼ 2,
the eigenvalue problem of the trapped gas has been studied
analytically by Busch et al. (1998) and Idziaszek and Calarco
(2006). The energy shift for N ¼ 2 (Busch et al., 1998) is
given by

ffiffiffi
2

p �ð�E=2þ 3=4Þ
�ð�E=2þ 1=4Þ ¼ 1=a1D;

where a1D is a scattering length and �ðxÞ is the Euler gamma
function (Busch et al., 1998). The system of two fermions
with arbitrary interaction in a 1D harmonic potential has been
experimentally investigated (Zürn et al., 2012). In this
experiment, the Tonks-Girardeau state and the metastable
super Tonks-Girardeau state have been observed.

This problem for an arbitrary number of particles was
studied analytically (Guan et al., 2009; Ma and Yang, 2009;
Yang, 2009), where the limiting cases c ! �1 and c ¼ 0
have been studied using group theory. In particular, Yang
(2009) gave an analysis of the ground state energy of fermi-
ons in a 1D trap with delta-function interaction. In light of
Yang’s argument, for any value of interaction strength, the
eigenvalue problems of (a) the trapped Hamiltonian with
symmetry Y ¼ ½N �M;M� in full 1N space, and (b) the
Hamiltonian in region RY with the boundary condition that
the wave function vanishes on its surface are equivalent. Here
the region RY is bounded by C2

N�M 	 C2
M planes at which the

wave function �Y vanishes. For any value of g, the ground
state wave function for problem (b) has no zeros in the
interior of RY and is not degenerate. Thus this suggests that
the ground state energy of the system with total spin J ¼
N=2�M increases monotonically and approaches to the
energy EJ¼N=2. The Lieb and Mattis theorem (Lieb and

Mattis, 1962) further suggests EJ > EJ0 if J > J0.
For c ! 1, the ground state energy of the trapped gas

with total spin J is given by EJ ¼
P

N�1
n¼0 ð12 þ nÞ ¼ 1

2N
2,

which is independent of the total spin J. For c ¼ 0 and J ¼
N=2�M, the energy is given by EJ ¼ 1

2 ð½N=2þ J�2 þ
½N=2� J�2Þ. Ma and Yang (2009) argued that EJ=N

2 !
fJðg=

ffiffiffiffi
N

p Þ with

fJðtÞ ¼

8>>><
>>>:
1=2 for t ! 1;

1=4þ ðJ=NÞ2 for t ¼ 0;

�ð1=2� J=NÞt2=4 for t ! �1;

where t ¼ g=
ffiffiffiffi
N

p
. In particular, for c ! 1, the exact wave

function of the system � ¼ c Ac J where the spatial wave
function and symmetric spin-wave function have been
derived explicitly (Guan et al., 2009)

c Aðx1; . . . ; xNÞ ¼ 1

ðN!Þ det½�jðxiÞ�j¼1;...;N
i¼1;...;N ;

c J ¼
XN!=ððN�MÞ!M!Þ

�¼1

fY½N�M;M�
� Q�gZ�;

for the symmetry R ¼ ½N �M;M�. Here Q� ¼ P�Q1 with
Q1 ¼

Q
‘
i¼1

Q
N
j¼Mþ1 sgnðxi � xjÞ. The basis tensor function

Y½M;M�
� was constructed explicitly from group theory

(Guan et al., 2009).
The fermion density distribution for 1D interacting fermi-

ons with harmonic trapping has strong oscillations on top of a
uniform density cloud (Rigol et al., 2003; Gao et al., 2006;
Gao and Asgari, 2008; Guan et al., 2009; Ma and Yang,
2009). These oscillations can be described by an analytical
form of the density distribution (Butts and Rokhsar, 1997;
Gleisberg et al., 2000; Söffing, Bortz, and Eggert, 2011)

nðxÞ � n0ðxÞ � ð�1ÞN=2

�LF

cos½2kFðxÞx�
1� x2=L2

F

(37)

for x � LF, where the density cloud is given by the Thomas-
Fermi profile, i.e.,

n0ðxÞ ¼ 2!LF

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=L2

F

q

with a Thomas-Fermi radius LF ¼ ffiffiffiffiffiffiffiffiffiffiffi
N=!

p
. If the longitudinal

confinement is weak enough, the atomic density varies
smoothly along the longitudinal direction and so the atomic
gases can be treated as locally homogeneous systems
(Kheruntsyan et al., 2005; Hu, Liu, and Drummond, 2007;
Orso, 2007). This type of approximate treatment is known as
the LDA. In this way density functional theory has been used
to study 1D interacting fermions (Magyar and Burke, 2004;
Gao et al., 2006, 2007; Hu et al., 2010).

To ensure the validity of the LDA, the correlation
length �ðzÞ should be much smaller than the characteristic
inhomogeneity length

�inh ¼ nðzÞ
jdnðzÞ=dzj ;

i.e., �ðzÞ � �inh. The two length scales �ðzÞ and �inh are
determined by the local chemical potential �ðzÞ and the local
density nðzÞ. From the definition of �inh, the LDA becomes
invalid near the edge of an atomic cloud where the density
drops rapidly. However, in real measurements, almost all
signal strengths are proportional to the density. Therefore,
due to the very small density at the edge, the central region of
large density dominates the measurement signals. For a large
number of particles, N ! 1, the density profiles of the
trapped gas can be precisely analyzed within the LDA.

In a harmonic trap, the equation of state (14) can be
reformulated within the LDA by the replacement �ðxÞ ¼
�ð0Þ � 1

2m!2
xx

2 in which x is the position and !x is the

frequency within the trap. Using the LDA for the 1D Bose gas
in a harmonic trap, its global chemical potential reads
(Kheruntsyan et al., 2005)

�g ¼ �0½nðzÞ� � VðzÞ ¼ �0½nðzÞ� � 1
2m!2

zz
2; (38)

where the local chemical potential �0½nðzÞ� at position z is
given by the chemical potential for a homogeneous system of
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a uniform density n ¼ nðzÞ. The total number of atoms N is
given as N ¼ R

nðzÞdz.
Similarly, for a 1D two-component Fermi gas in a

harmonic trap, the global chemical potential is (Hu, Liu,
and Drummond, 2007; Orso, 2007; Heidrich-Meisner, Orso,
and Feiguin, 2010; Ma and Yang, 2010a)

�hom½nðxÞ; PðxÞ� ¼ �0 � 1
2m!2

xx
2;

where the chemical potential �hom½n; P� can be obtained
from the homogenous gas (14). nðxÞ is the total linear number
density and PðxÞ is the local spin polarization. They can be
determined from restriction on the total particle number N ¼R1
�1 nðxÞdx and polarization P ¼ R1

�1 nuðxÞdx=N which are

rewritten as (Hu, Liu, and Drummond, 2007; Orso, 2007; Gao
and Asgari, 2008; Yin, Guan, Chen, and Batchelor, 2011)

Na21D=a
2
x ¼ 4

Z 1

�1
~nðxÞd~x;

ðNa21DÞP ¼ 4
Z 1

�1
~nuðxÞd~xa2x:

(39)

Here ~nðxÞ¼1=j
ðxÞj, ax¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðm!xÞ

p
, and ~nuðxÞ¼nuðxÞ=jcj.

If the trapping potentials are the same for the two spin
components, calculations for the integrable homogenous attrac-
tive gas confined to a 1D trapping potential thus lead to a two-
shell structure composed of a partially polarized 1D FFLO-like
state in the trapping center surrounded by wings composed of
either a fully paired state or a fully polarized Fermi gas (Hu, Liu,
and Drummond, 2007; Orso, 2007; Gao and Asgari, 2008); see
Fig. 9. This predictionwas verified by Liao et al. (2010)with the
observation of three distinct phases in experimental measure-
ments of ultracold 6Li atoms in an array of 1D tubes. The
analytical study of the phase diagram of the 1D attractive
Fermi gas has been presented by Guan et al. (2007), Iida and
Wadati (2007), and Guan and Ho (2011).

C. Tomonaga-Luttinger liquids

The TLL (Tomonaga, 1950; Luttinger, 1963), describing
the collective motion of bosons, has played an important role
in the novel description of universal low-energy physics for
low-dimensional many-body physics (Gogolin, Nersesyan,
and Tsvelik, 1998; Giamarchi, 2004). In 1D systems of

interacting bosons, fermions, or spin systems, the effect of

quantum fluctuations is strong enough to yield striking anoma-

lous quantum phenomena. In this approach, for example, the

low-energy physics of a 1D interacting fermion system can

be described by a bilinear form of bosonic creation and
annihilation operators. The TLL is phenomenologically

treated by bosonization techniques (Tsvelik and Wiegmann,

1983; Gogolin, Nersesyan, and Tsvelik, 1998; Giamarchi,

2004; Cazalilla et al., 2011) based on a linearization of the

dispersion relation of the particles in the collective motion, i.e.,

!ðqÞ ¼ vsjqj; here vs is the sound velocity of the collective

motion. In contrast to the Fermi liquid, this thus leads to a
power-law density of states for the TLL at the Fermi energy

EF, i.e., jE�EFj�, where the exponent �¼ðKþ1=K�2Þ=2
depending on the so-called TLL parameter K.

In general, the correlation functions of such 1D systems at

zero temperature show a power-law decay determined by the

TLL parameter K and the velocity vs. These critical systems

not only have global scale invariance but exhibit local con-

formal invariance. With the help of exact BA solutions, a
wide class of 1D interacting systems can be mapped onto

TLLs in the low-energy limit, including the electronic

systems with spin degrees of freedom such as spin-charge

separation (Sólyom, 1979; Kawakami and Yang, 1990;

Schulz, 1990, 1991; Voit, 1995; Giamarchi, 2004; Essler

et al., 2005). Moreover, progress in treating such collective

motion of particles beyond the low-energy limit was made by
Imambekov and Glazman (2009a, 2009b), and Imambekov,

Schmidt, and Glazman (2011). This method can be applied to

a wide variety of 1D systems with collective motion of

particles. This generalized TLL theory could be possibly

justified through exact BA results for 1D integrable models

in ultracold atoms and correlated electronic systems.
In contrast to the conventional quasiparticles carrying both

spin and charge degrees, the elementary excitations form spin
and charge waves that propagate with different velocities in

1D (Gogolin, Nersesyan, and Tsvelik, 1998). The relativistic

dispersion relation for each one of these excitations is written

as !�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

� þ v2
�p

2
q

, where �� is the energy gap and

v� is the velocity. For a gapless excitation with vanishing

energy gap v� ¼ @p!�ðpÞ. For 1D interacting systems, this

gives a phonon dispersion that leads to conformal invariance

in the excitation spectrum. However, for a large energy gap,

the dispersion can be rewritten as !�ðpÞ ¼ �� þ v2
�p

2=

ð2��Þ :¼ �� þ p2=ð2m
�Þ which is the classical dispersion

of a free particle with an effective mass m
�.

From the BA solution (11) with N" ¼ N#, the charge and

spin velocities are vc;s ¼ 1
2vFð1� 
=�2Þ for the weak cou-

pling regime (Fuchs, Recati, and Zwerger, 2004; Batchelor

et al., 2006a, 2006b). Here the Fermi velocity vF ¼ ℏ�n=m.
For strong attraction, the charge and spin velocities are given

by vc ¼ 1
4vFð1� 1=
Þ and vs ¼

ffiffiffiffi
�

p ð1� 2=
Þ (Fuchs,

Recati, and Zwerger, 2004; Batchelor et al., 2006a, 2006b)

with an energy gap � � ðℏ2=2mÞc2=2. This gap increases
with increasing interaction strength 
 so that the spin velocity

is divergent in the strongly attractive limit. However, for

strong repulsion the charge velocity vc ¼ vFð1� 4 ln2=
Þ
tends to the Fermi velocity and the spin velocity goes to

zero vs ¼ vF�
2=3
ð1� 6 ln2=
Þ (Lee et al., 2012) due to
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Na21D=a
2
x ¼ 1; 10, 1, 0.1, and 0 are shown. From Orso, 2007.
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suppression of spin transportation due to the strong repulsion;
see Fig. 10. We discuss TLLs and spin-charge separation
phenomena in the attractive Fermi gas in Secs. III.E and III.F.

D. Universal thermodynamics and Tomonaga-Luttinger liquids

in attractive fermions

The Yang-Yang formalism with its generalization for the
study of thermodynamics of BA integrable systems
(Takahashi, 1999) is a convenient tool for the study of
universal thermodynamics and quantum criticality in the
presence of external fields. At finite temperatures and in the
thermodynamic limit, the densities in the Fredholm equations
(13) evolve into occupied and unoccupied roots in the whole
parameter spaces, namely, A1, A2 ! 1. In particular, the
roots in the spin sector form complicated string patterns
that characterize the spin excitations, i.e., spin-wave bound
states. The density distribution functions of pairs, unpaired
fermions, and spin strings involve the densities of ‘‘particles’’
�iðkÞ and ‘‘holes’’ �h

i ðkÞ (i ¼ 1, 2). Following the Yang-Yang
grand canonical ensemble method, the grand partition func-
tion is written as Z ¼ trðe�H=TÞ ¼ e�G=T , in terms of the
Gibbs free energy G ¼ E�HMz ��n� TS and the mag-
netic field H, the chemical potential �, and the entropy S
(Takahashi, 1999). In terms of the dressed energies �bðkÞ :¼
T ln½�h

2ðkÞ=�2ðkÞ� and �uðkÞ :¼ T ln½�h
1ðkÞ=�1ðkÞ� for paired

and unpaired fermions, the equilibrium states are determined
by the minimization condition of the Gibbs free energy,
which gives rise to a set of coupled nonlinear integral
equations—the TBA equations (Takahashi, 1999). For the
attractive Gaudin-Yang model, these equations are

�bðkÞ ¼ 2

�
k2 ��� 1

4
c2
�
þ TK2  lnð1þ e��bðkÞ=TÞ

þ TK1  lnð1þ e��uðkÞ=TÞ;
�uðkÞ ¼ k2 ��� 1

2
H þ TK1  lnð1þ e��bðkÞ=TÞ

� T
X1
‘¼1

K‘  ln½1þ ��1
‘ ðkÞ�; (40)

ln�‘ð�Þ ¼ ‘H

T
þ K‘  lnð1þ e��uð�Þ=TÞ

þ X1
m¼1

T‘m  ln½1þ ��1
m ð�Þ�: (41)

The function �‘ð�Þ :¼ �h
‘ð�Þ=�‘ð�Þ is the ratio of the

string densities. Here  denotes the convolution integral
ðf  gÞð�Þ ¼ R1

�1 fð�� �0Þgð�0Þd�0. The function T‘mðkÞ
is given by Takahashi (1999) and Guan et al. (2007). The
Gibbs free energy per unit length is given by G ¼ pb þ pu

where the effective pressures of the bound pairs and unpaired
fermions are given by

pb ¼ � T

�

Z 1

�1
dk lnð1þ e��bðkÞ=TÞ;

pu ¼ � T

2�

Z 1

�1
dk lnð1þ e��uðkÞ=TÞ:

(42)

In the grand canonical ensemble, the total number of
particles associated with the chemical potential � can be
changed. The Fermi sea of unpaired fermions can be lifted
by the external field. The entropy S is a measure of the
thermal disorder. The spin fluctuations (spin strings) are
ferromagnetically coupled to the Fermi sea of unpaired
fermions. The direct numerical computation of the TBA
equations was presented by Kakashvili and Bolech (2009).
The TBA equations for this model involve an infinite number
of coupled nonlinear integral equations that impose a number
of challenges to accessing the physics of the model.

For zero external field, the lowest excitations split into
collective excitations carrying charge and collective excita-
tions carrying spin. This leads to the phenomenon of spin-
charge separation. The charge excitations are described by
sound modes with a linear dispersion. However, for the
external field in excesses of the lower critical field the spin
gap vanishes. In contrast to the spin-charge separation for-
malism, the spin-charge coupling drastically changes the
critical behavior in the attractive regime of the Fermi gas.
The TBA equations (41) indicate that the spin fluctuations
(the spin-wave bound states) are ferromagnetically coupled
to the Fermi sea of unpaired fermions (Zhao et al., 2009).
In contrast to the antiferromagnetic coupling JAF ¼
�ð2=jcjÞpuðT;HÞ for the repulsive regime (Guan,
Batchelor, and Lee, 2008), the spin-spin exchange interaction
in the spin sector is described by an effective spin-1=2
ferromagnetic chain with a coupling constant JF �
ð2=jcjÞpuðT;HÞ> 0 in the strong coupling regime jcj � 1.
The ferromagnetic spin-wave fluctuations are produced due
to the thermal fluctuation in the Fermi sea of unpaired
fermions. However, JF tends to zero for 
 ! 1. Therefore
the spin transportation becomes weaker and weaker until it
vanishes as j
j ! 1. At zero temperature all unpaired fer-
mions are polarized and spin strings are fully suppressed. In
this gapless phase, excitations involve particle-hole excita-
tions and spin-string excitations. The TBA equations (41) can
be greatly simplified in the strong coupling regime due to the
suppression of spin fluctuations, where ��1

‘ � e�‘H=T ! 0 as
T ! 0. Thus one can extract the universal TLL physics using
Sommerfeld expansion for temperatures less than chemical
potential and magnetic field.
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velocities obtained by numerically solving the BA equations (11).

The dotted lines denote the analytical result for the velocity in the

weak coupling regimes. From Batchelor et al., 2006a.
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In fact, in this spinless phase, the spin fluctuation is sup-
pressed in the limit T ! 0 and j
j � 1. Thus the bound pairs
and unpaired fermions form a two-component TLL.
Conformal invariance predicts that the energy per unit length
has a universal finite-size scaling form that is characterized
by the dimensionless number C, which is the central charge
of the underlying Virasoro algebra (Affleck, 1986; Blöte,
Cardy, and Nightingale, 1986; Cardy, 1986). The finite-size
corrections to the ground state energy have been analytically
derived (Lee and Guan, 2011)

"0 ¼ "10 � C�

6L2

X
�¼u;b

v�; (43)

where C ¼ 1 with vu and vb the velocities of unpaired
fermions and bound pairs, respectively. For strong interaction,
they are given explicitly by

vb � ℏ
2m

�n2

�
1þ 2A2

jcj þ 3A2
2

c2

�
;

vu � ℏ
2m

2�n1

�
1þ 2A1

jcj þ
3A2

1

c2

�
;

(44)

where A1 ¼ 4n2, A2 ¼ 2n1 þ n2, and n2 ¼ n#. We describe

universal behavior of the macroscopic properties of this Fermi
gas in Secs. III.E and III.F.

Although a phase transition in 1D many-body systems at
finite temperatures does not exist, the system does exhibit
universal crossover from relativistic dispersions to quadratic
dispersions. Thus at low temperatures, the bound pairs, nor-
mal Fermi gas, and the FFLO phase become relativistic TLLs
of bound pairs (TLLP), unpaired fermions (TLLF), and a two-
component TLL (TLLPP), respectively; see Fig. 11. A de-
tailed discussion has been given (Zhao et al., 2009; Yi, Guan,
and Batchelor, 2012). For the temperature kBT � EF, where
EF is the Fermi energy, the leading low-temperature correc-
tion to the free energy of the polarized gas can be calculated
explicitly using Sommerfeld expansion with the pressures

(42), namely (Guan et al., 2007; He et al., 2009; Zhao
et al., 2009; Batchelor et al., 2010)

FðT;HÞ�

8>>>><
>>>>:

E0ðHÞ��Ck2BT
2

6ℏ ð 1vb
þ 1

vu
Þ; forTLLPP;

E0ðHÞ��Ck2BT
2

6ℏ
1
vb
; forTLLP;

E0ðHÞ��Ck2BT
2

6ℏ
1
vF
; forTLLF;

(45)

which belongs to the universality class of the Gaussian model
with central charge C ¼ 1. For strong attraction, the veloc-
ities are given in Eq. (44). In Eq. (44), the ground state energy
E0ðHÞ is as given in Sec. II.B.1. In fact, from the TBA
equations (41), the universal thermodynamics (45) can be
shown to be valid for arbitrary interaction strength.

The two branches of gapless excitations in the 1D FFLO-
like phase form collective motions of particles. The low-
energy (long wavelength) physics of the strongly attractive
Fermi gas is described by an effective Hamiltonian

Heff ¼vu

2
½ð@x�uÞ2þð@x�uÞ2�þvb

2
½ð@x�bÞ2þð@x�bÞ2�

�h

2

@x�uffiffiffiffi
�

p ��
@x�uþ2@x�bffiffiffiffi

�
p (46)

as long as the spin fluctuation is frozen out (Vekua,
Matveenko, and Shlyapnikov, 2009; Zhao et al., 2009).
Here the fields @x�i, @x�i with i ¼ b, u are the density and
current fluctuations for the pairs and unpaired fermions.
However, in the spin gapped phase, i.e., for H <Hc1, the
energy gap in the spin sector leads to an exponential decay of
spin correlations, whereas the singlet pair correlation and
charge density wave correlations have a power-law decay
(Cazalilla, Ho, and Giamarchi, 2005; Gao et al., 2007).
Thus the system in the spin gapped phase forms a so-called
Luther-Emery liquid (Luther and Emery, 1974).

E. Quantum criticality and universal scaling

As seen, the 1D attractive Fermi gas exhibits various
phases of strongly correlated quantum liquids and is thus
particularly valuable to investigate quantum criticality. Near
a quantum critical point, the many-body system is expected to
show universal scaling behavior in the thermodynamic quan-
tities due to the collective nature of the many-body effects. In
the framework of Yang-Yang TBA thermodynamics, exactly
solvable models of ultracold atoms, exhibiting quantum
phase transitions, provide a rigorous way to treat quantum
criticality in archetypical quantum many-body systems, such
as the Gaudin-Yang Fermi gas (Guan and Ho, 2011), the
Lieb-Liniger Bose gas (Guan and Batchelor, 2011), a mixture
of bosons and fermions (Yin et al., 2012), and the spin-1
Bose gas with both delta-function and antiferromagnetic
interactions (Kuhn et al., 2012a, 2012b).

At zero temperature, the quantum phase diagram in the
grand canonical ensemble can be analytically determined
from the so-called dressed energy equations (Takahashi,
1999; Guan and Batchelor, 2011; Guan and Ho, 2011)

FIG. 11 (color online). Quantum phase diagram of the Gaudin-

Yang model in the T-H plane showing a contour plot of the entropy

in the strong interaction regime. The dashed lines are determined

from the deviation from linear-temperature-dependent entropy ob-

tained from the result (45). The universal crossover temperatures

separate the TLLs from quantum critical regimes. From Yi, Guan,

and Batchelor, 2012.
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�bð�Þ ¼ 2

�
�2 ��� c2

4

�

�
Z A2

�A2

K2ð���0Þ�bð�0Þd�0

�
Z A1

�A1

K1ð�� kÞ�uðkÞdk;

�uðkÞ ¼ k2 ���H

2
�
Z A2

�A2

K1ðk��Þ�bð�Þd�; (47)

which are obtained from the TBA equations in the limit
T ! 0. The integration boundaries A2 and A1 characterize
the Fermi surfaces for bound pairs and unpaired fermions,
respectively. It is convenient to use dimensionless quantities
where energy and length are measured in units of binding
energy "b and c

�1, respectively. In terms of the dimensionless
quantities ~� :¼ �="b, h :¼ H="b, t :¼ T="b, ~n :¼ n=jcj ¼

�1, and ~p :¼ P=jc"bj, the phase boundaries have been
determined analytically from Eq. (47); see Guan and Ho
(2011). There are four phases denoted by vacuum ðVÞ, fully
paired phase ðPÞ, ferromagnetic phase ðFÞ, and partially
paired ðPPÞ or (FFLO-like) phases presenting the same phase
diagram as in Fig. 9.

The low density and strong coupling limits are particularly
important to study quantum criticality. In fact, the TBA
equations (41) can be converted into a dimensionless form
with the above rescaling. Following the notation used by
Guan and Ho (2011), the phase boundaries between V � F,
V � P, F� PP, and P� PP are denoted by �c1 to �c4,
respectively. The closed forms of the critical fields

�c1 ¼ � h

2
; �c2 ¼ � 1

2
;

�c3 ¼ � 1

2

�
1� 2

3�
ðh� 1Þ3=2 � 2

3�2
ðh� 1Þ2

�
;

�c4 ¼ � h

2
þ 4

3�
ð1� hÞ3=2 þ 3

2�2
ð1� hÞ2

(48)

are needed to determine scaling functions of thermodynamic
properties. Here �c1, �c2 applies to all regimes and �c3, �c4

are expressions in the strongly interacting regime. The above
critical fields �c3, �c4 correspond to the upper and lower
critical fields in the h-n plane, which can be found in Guan
et al. (2007), Iida and Wadati (2007), and He et al. (2009).

The TBA equations (40) and (41) encode the microscopic
roles of each single particle that lead to a global coherent
state—quantum criticality. Quantum criticality is manifested
by universal scaling of thermodynamic properties near the
critical points. The key input to obtain critical scaling
behavior is to derive the form of the equation of state which
takes full thermal and quantum fluctuations at low tempera-
tures into account. The dimensionless form of the pressure
(Guan and Ho, 2011)

~pðt; ~�; hÞ :¼ p=jcj"b ¼ ~pb þ ~pu (49)

serves as the equation of state, where toOðc4Þ the pressures of
the bound pairs and unpaired fermions are given by

~pb ¼ � t3=2

2
ffiffiffiffi
�

p Fb
3=2

�
1þ ~pb

8
þ 2~pu

�
þOðc4Þ;

~pu ¼ � t3=2

2
ffiffiffiffiffiffiffi
2�

p Fu
3=2½1þ 2~pb� þOðc4Þ;

(50)

with in addition

Xb

t
¼ �b

t
� ~pb

t
� 4~pu

t
� t3=2ffiffiffiffi

�
p

�
1

16
fb5=2 þ

ffiffiffi
2

p
fu5=2

�
;

Xu

t
¼ �u

t
� 2~pb

t
� t3=2

2
ffiffiffiffi
�

p fb5=2 þ e�h=te�KI0ðKÞ:

In these equations the functions Fb
n, F

u
n, f

b
n, and f

u
n are defined

by Fb;u
n :¼ Linð�eXb;u=tÞ and fb;un :¼ Linð�e�b;u=tÞ, with the

notation �b ¼ 2 ~�þ 1, �u ¼ ~�þ h=2. The function

LisðzÞ ¼
X1
k¼1

zk=ks

is the polylog function and

I0ðxÞ ¼
X1
k¼0

1

ðk!Þ2
�
x

2

�
2k
:

Despite the equation of state (49) having only a few leading
terms in expansions with respect to the interaction strength,
it contains thermal fluctuations in contrast to the TLL
thermodynamics (45).

The TLL thermodynamics (45) has been derived from low-
temperature expansion along T � j���cj. This universal
thermodynamics is a consequence of the linearly dispersing
phonon modes (Maeda, Hotta, and Oshikawa, 2007), i.e., the
long wavelength density fluctuations of two weakly coupled
gases or a gas of bound pairs or single fermions. The quantum
critical regime lies beyond T � j���cj. In this limit, the
equation of state (49) provides closed forms for the scaling
functions of thermodynamic quantities, such as density, mag-
netization, and the compressibility. Near the critical point, the
thermodynamic functions can be cast into a universal scaling
form (Fisher et al., 1989; Sachdev, 1999). The explicit
universal scaling form of the density for T � j���cj is

ðV � FÞ ~n � �
ffiffi
t

p

2
ffiffiffiffiffiffiffi
2�

p Li1=2ð�eð ~���c1Þ=tÞ;

ðF� PPÞ ~n � no3 � �1

ffiffi
t

p
Li1=2ð�e2ð ~���c3Þ=tÞ;

ðV � PÞ ~n � �
ffiffi
t

p
ffiffiffiffi
�

p Li1=2ð�e2ð ~���c2Þ=tÞ;

ðP� PPÞ ~n � no4 � �2

ffiffi
t

p
Li1=2ð�eð ~���c4Þ=tÞ:

(51)

Here the constants no3 and no4 are the background densities
near the critical points �3 and �4. These constants, together
with a and b, are known explicitly in terms of h (Guan and
Ho, 2011).
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The universal scaling form for the compressibility is

ðV � FÞ ~� � � 1

2
ffiffiffiffiffiffiffiffi
2�t

p Li�1=2ð�eð ~���c1Þ=tÞ;

ðF� PPÞ ~� � �o3 � �4ffiffi
t

p Li�1=2ð�e2ð ~���c3Þ=tÞ;

ðV � PÞ ~� ¼ � 2ffiffiffiffiffiffi
�t

p Li�1=2ð�e2ð ~���c2Þ=tÞ;

ðP� PPÞ ~� ¼ �o4 � �5ffiffi
t

p Li�1=2ð�eð ~���c4Þ=tÞ;

(52)

where �o3, �o4, �4, and �5 are also known (Guan and Ho,
2011).

In the Gaudin-Yang model, the above density and
compressibility can be cast into the universal scaling forms

nð�; T; xÞ ¼ n0 þ Tðd=zÞþ1�ð1=�zÞG
�
�ðxÞ ��c

T1=�z

�
; (53)

�ð�; T; xÞ ¼ �0 þ Tðd=zÞþ1�ð2=�zÞF
�
�ðxÞ ��c

T1=�z

�
; (54)

with dimensionality d ¼ 1. Here the scaling functions are
GðxÞ ¼ ��Li1=2ð�exÞ and F ðxÞ ¼ �Li�1=2ð�exÞ from

which one can read off the dynamical critical exponent
z ¼ 2 and correlation length exponent � ¼ 1=2 for different
phases of the spin states. Such results illustrate the microscopic
origin of the quantum criticality of different spin states, i.e., the
singular parts in Eqs. (53) and (54) characterize sudden
changes of the density of state of either excess fermions or
bound pairs. The TLL is maintained below the crossover
temperature T which indicates a universal crossover from a
relativistic dispersion into a nonrelativistic dispersion (Maeda,
Hotta, and Oshikawa, 2007). The quantum criticality driven by
the external field H gives rise to the same universality class.

Using the LDA presented in Eq. (39), quantum criticality
of the bulk system can be mapped out through finite tem-
perature density profiles in the trapped gas. For small polar-
ization, the chemical potential passes the lower critical point
�c2 ¼ �1=2 from the vacuum into the fully paired phase and
then passes the upper critical point �c4 from the fully paired
phase into the FFLO-like phase. At finite temperatures, quan-
tum criticality of the Fermi gas can be clearly seen from
contour plots of entropy in the T-� plane; see Fig. 12(a). The
typical V-shape crossover temperature T separates the quan-
tum critical regimes where T / j���cj. The crossover
temperatures are determined by minimums or maximums of
the magnetization or by the breakdown of the linear-tempera-
ture-dependent entropy (Zhao et al., 2009). Figures 12(b) and
12(c) show that the paired and unpaired density curves for
different temperatures intersect at the critical points �c2 and
�c4, respectively. Figures 12(d) and 12(e) show the intersec-
tion nature of the compressibility for different temperatures at
the critical points �c2 and �c4, respectively.

The phase boundary separating the fully paired phase from
the FFLO-like phase can be mapped out from the density
profiles of unpaired fermions in the trapped gas at finite
temperatures. As the temperature decreases, the compressi-
bility evolves a round peak sitting in the phase of the higher
density of state. It diverges at zero temperature. Similarly, for
the high polarization case, the density profiles of unpaired and

paired atoms can be used to map out the phase boundaries�c1

(V ! F) and �c3 (F ! PP), respectively (Yin, Guan, Chen,
and Batchelor, 2011). This signature can be used to confirm
the quantum critical law as per the recent experimental
measurements (Zhang et al., 2012).

The universal scaling behavior of the homogenous system
can be mapped out through the density profiles of the trapped
gas at finite temperatures. However, inhomogeneity caused
by the finite-size scaling effect is evident in the scaling
analysis (Campostrini and Vicari, 2009, 2010a, 2010b;
Zhou and Ho, 2010; Ceccarelli, Torrero, and Vicari, 2012).
It has been proved that quantum criticality of the bulk system
can be revealed from the singular part of a thermodynamic
quantity near the trapping center x ¼ 0. The scaling behavior
exists in the limit of large trapping size. For example, under a
scale change b, the singular part of the density below the
critical dimension dc can be written (Zhou and Ho, 2010)

nð�; T;!2; xÞ ¼ b�ðdþzÞþ1=�Gð ��b1=�; Tbz; !2by; x=bÞ
with �� ¼ ���c and y ¼ 2þ 1=�. Choosing Tbz ¼ 1, the

scaling function with finite-size trapping is �Gð�; TjD; xÞ ¼
Gð ��=T1=ð�zÞ; D; xT1=zÞ with D ¼ !2=Ty=z. The scaling be-

havior is revealed through plotting �G vs � at x ¼ 0
for different temperatures with a fixed D. This means that
the scaling behavior of the homogeneous system could
be extracted from the trapping center in a small window
(Zhou and Ho, 2010). Nevertheless, the finite-size error lies
within the current experimental accuracy (Zhang et al.,
2012). One can either lower the temperature or increase the
interaction strength such that all data curves for the physical
properties at different temperatures collapse into a single
curve with a proper scaling in the trapped gas.

(b)

(d)

(c)

(e)

(a)

FIG. 12 (color online). Quantum criticality of the 1D Fermi gas in

a harmonic trap for low polarization: (a) contour plot of the entropy

in the t-� plane. Symbols indicate the crossover temperature T

separating the quantum critical regimes from vacuum, single com-

ponent TLLP of paired fermions, and two-component TLLPP of

FFLO-like states. The intersection of the density curves at different

temperatures can map out the critical points (b) �c2 and (c) �c4.

The corresponding compressibility curves (d) and (e) intersect at

the same critical points after a subtraction of the background

compressibility. From Yin, Guan, Chen, and Batchelor, 2011.
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F. Spin-charge separation in repulsive fermions

Landau’s Fermi liquid theory provides a universal descrip-
tion of low-energy physics of interacting electron systems
in higher dimensions, where interactions lead only to
finite renormalizations of physical properties (Landau,
1957a, 1957b, 1959). The quasiparticle excitations have a
divergent lifetime when the excitation energy goes to zero.
Renormalization of individual quasiparticles leads to a simi-
lar Fermi liquid behavior, e.g., a finite density of states and a
steplike singularity in momentum distribution at zero tem-
perature. The deviations from the values of physical proper-
ties of noninteracting systems present the interaction effect.
However, the low-energy physics of 1D interacting many-
body systems does not have such quasiparticle-type excita-
tions. In 1D many-body systems, all particles participate in
the low-energy excitations and form collective motions of the
charge and spin densities with different velocities (Tsvelik
and Wiegmann, 1983; Gogolin, Nersesyan, and Tsvelik,
1998; Giamarchi, 2004; Cazalilla et al., 2011). Thus the
low-energy physics depends only on the TLL parameter
and the velocities of collective charge and spin oscilla-

tions. Introducing charge and spin boson fields �c;� ¼ ð�" �
�#Þ=

ffiffiffi
2

p
, �c;� ¼ ð�" ��#Þ=

ffiffiffi
2

p
the low-energy physics of

the 1D spin-1=2 repulsive Fermi gas can be described by an
effective Hamiltonian (Schulz, 1991; Giamarchi, 2004)

H ¼ Hc þH� þ 2g1
ð2��Þ2

Z
dx cosð ffiffiffiffiffiffiffiffiffiffi

8��

p Þ: (55)

The fields �� and �� obey the standard Bose communi-
cation relations ½��;��� ¼ i	��	ðx� yÞ with �, � ¼ c, �.

The parameter � is a short-distance cutoff. The last term in
the effective Hamiltonian (55) characterizes the backscatter-
ing process, i.e., it corresponds to a 2kF scattering. The 1D
interacting Fermi gas separates into charge and spin parts

H� ¼
Z

dx

�
�v�K�

2
�2

� þ v�

2�K�

ð@x��Þ2
�
: (56)

The coefficients for different processes are given phenom-
enologically (Giamarchi, 2004). The coefficient vc=Kc is the
energy cost for changing the particle density while v�=K�

determines the energy for creating a nonzero spin polariza-
tion. The compressibility and susceptibility are given by
� ¼ 2Kc=�vc and � ¼ 2K�=�v�, respectively.

At fixed point g1 ¼ 0 the specific heat is given by a linear-
temperature-dependent relation c ¼ 
cT, where 
c=
0 ¼
ðvF=vc þ vF=v�Þ=2. Here 
0 is the specific heat coefficient
of noninteracting fermions. The susceptibility is given by
�=�0 ¼ vF=v�, where the noninteracting susceptibility
reads �0 ¼ 1=�vF. Thus the Wilson ratio at the fixed point
is given by

RW ¼ 2vc

vc þ v�

: (57)

This ratio gives a universal feature of collective motions
of particles. The TLL parameter K� and charge and spin
velocities v� determine universal behavior of correlation
functions (Schulz, 1991; Cheianov and Zvonarev, 2004;
Giamarchi, 2004).

On the other hand, in terms of the TBA formalism, the
physical quantities are described by the set of nonlinear
integral equations (Lai, 1971, 1973; Takahashi, 1971b)

"ðkÞ ¼ k2 ���H

2
� T

X1
‘¼1

K‘  lnð1þ e��‘ðkÞ=TÞ;

�jð�Þ ¼ jH � TKj  lnð1þ e�"ð�Þ=TÞ

þ T
X1
m¼1

Tjm  lnð1þ e��mð�Þ=TÞ (58)

with j ¼ 1; . . . ;1. Here TjmðkÞ is given in Takahashi (1999).

The free energy per unit length F and the pressure P follow as

F��n�P; P¼ T

2�

Z 1

�1
lnð1þe�"ðkÞ=TÞdk; (59)

where n denotes the particle density. The spin-wave bound
states give an antiferromagnetic ordering at low temperatures.
The population imbalances associated with the Fredholm
equations (12) lead to three distinguishable phases: the
spin singlet ground state with magnetization mz ¼ 0
(zero magnetic field), a magnetic phase with finite magneti-
zation (0<H <Hs), and a fully polarized phase with
mz ¼ 1=2 (H >Hs). The critical field, at which the density
of down-spin atoms is zero, is given by (Lee et al., 2012)

Hs ¼
�
c2

2�
þ 2�n2

�
tan�1

�
2�n

c

�
� cn: (60)

The phase diagram in the chemical potential-magnetic field
plane is shown in Fig. 13.

Spin-charge separation is a hallmark of the TLL physics
for 1D interacting fermions. For arbitrary repulsive coupling
c > 0 in arbitrary magnetic field H � Hc, the TBA equations
(58) yield (Lee et al., 2012)

F ¼ E0 � �T2

6

�
1

vs

þ 1

vc

�
; (61)
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FIG. 13 (color online). The zero-temperature phase diagram of the

Gaudin-Yang model in the repulsive regime. Here the chemical

potential and magnetic field are rescaled by �b ¼ ðℏ2=2mÞc2. PP
denotes the partially polarized phase with finite magnetization. FP
denotes the fully polarized phase.
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where vc and vs are, respectively, the holon and spinon
excitation velocities

vc ¼ "0cðk0Þ
2��cðk0Þ ; vs ¼ "0sð�0Þ

2��sð�0Þ : (62)

However, the velocities vc and vs can be analytically calcu-
lated only for strong and weak interactions. The numerical
solutions of spin and charge velocities have been discussed
(Recati et al., 2003; Fuchs, Recati, and Zwerger, 2004;
Batchelor et al., 2006a, 2006b); see Fig. 10. In a harmonic
trap, there is an imbalanced mixture of two-component fer-
mions in the trapping center and fully polarized fermions at
the edge (Abedinpour et al., 2007; Colomé-Tatché, 2008; Ma
and Yang, 2009, 2010a). The exact analytical solution of
quasi-one-dimensional spin-1=2 fermions with infinite
repulsion for an arbitrary confining potential was present in
Guan et al. (2009).

In the context of exact solutions, considerable work has
been done to derive low-temperature analytic results for BA
solvable models. These include the work on the free energy of
spin chains at low temperatures under a small magnetic field
(Mezincescu and Nepomechie, 1993; Mezincescu et al.,
1993) and the calculation of the leading temperature-
dependent terms in the free energy of the massive
Heisenberg model by Johnson and McCoy (1972). Later,
Filyov, Tsvelick, and Wiegmann (1981) derived an exact
solution to the s-d exchange model expressed as a series in
terms of the temperature. Following the method proposed
(Mezincescu and Nepomechie, 1993; Mezincescu et al.,
1993) for small external fieldH � 1, Lee et al. (2012) solved
the TBA equations (58) by the Weiner-Hopf method, where
the dressed energy potential is simplified as "ðkÞ � k2 � A
with the cutoff chemical potential A :¼ �þ 2p ln2=cþ
cH2=4�2pþ cT2=6p. Here p is the pressure. The terms in
the function A provide insights on spin and charge density
fluctuations. With the help of this potential and using
Sommerfeld’s lemma (Pathria, 1996), the free energy of the
system defined by Eq. (59) is given by

F � 1

3
�2n3

�
1� 4 ln2




�
� 3
H2

8�4n

�
1þ 6 ln2




�

� 
T2

4�2n

�
1þ 6 ln2




�
� T2

12n
(63)

which gives the universal low-temperature form of spin-
charge separation theory (61) with the excitation velocities

vc � 2�n

�
1� 4 ln2




�
; vs � 2�3n

3


�
1� 6 ln2




�
:

For the external field approaching the saturation field Hs,
the charge and spin velocities can be derived from the
Eqs. (62). The leading terms in the velocities are then found
to be

vc ¼ 2�n

�
1� 12

�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s �
; vs ¼ Hc

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
:

The susceptibility values for different values of the chemical
potential are consistent with the field theory prediction
�vs ¼ �=� with � ¼ 1=2 (Giamarchi, 2004) for strong re-
pulsion. On the other hand, the TBA equations (58) show that

the spin-spin interaction for the system of the polarized
fermions with strong coupling 
 � 1 can be effectively
described by the isotropic spin-1=2 Heisenberg chain with a
weak antiferromagnetic coupling J ¼ �ð2=jcjÞpuðT;HÞ. For
the isotropic spin-1=2 Heisenberg chain, the susceptibility at
H ¼ 0 is given by � ¼ 1=J�2 which coincides with the field
theory prediction �vs ¼ �=� (Lee et al., 2012).

Furthermore, for strong repulsion, the pressure of the gas
with a weak magnetic field is given by (Lee et al., 2012)

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
m

2�ℏ2

r
T3=2Li3=2ð�eA=TÞ: (64)

This result provides the low-temperature thermodynamics
which extends beyond the range covered by spin-charge
separation theory. With the low-temperature expansion, the
pressure (64) significantly evolves into the thermodynamics
of two free Gaussian fields at criticality. The result for the free
energy at low temperature gives a universal signature of TLLs
where the leading low-temperature contributions are solely
dependent on the spin and charge velocities. This opens a way
to experimentally explore how the low-temperature thermo-
dynamics of a 1D many-body system naturally separates
into two free Gaussian field theories. This may possibly
be used to test the spin and charge velocities in experiment
with an ultracold atomic 1D Fermi gas in a harmonic trap
(Recati et al., 2003; Cheianov and Zvonarev, 2004), where
the spin and charge of the ultracold atoms refer to two internal
atomic hyperfine states and the atomic mass density, respec-
tively, as per the theoretical scheme to explore spin-
charge separation waves in Fig. 14. This phenomenon has
already been experimentally observed in electron liquids
(Jompol et al., 2009; Deshpande et al., 2010).

IV. FERMI-BOSE MIXTURES IN 1D

The experimental advances in trapping and cooling ultra-
cold quantum gases have also led to realizations of degener-
ate Fermi-Bose mixtures with various combinations of
fermionic and bosonic atoms such as 6Li-7Li (Truscott
et al., 2001), 6Li-23Na (Hadzibabic et al., 2002; Stan et al.,
2004), 40K-87Rb (Roati et al., 2002; Inouye et al., 2004;
Ospelkaus et al., 2006), 6Li-87Rb (Silber et al., 2005),
173Yb-174Yb (Fukuhara et al., 2009), 6Li-174Yb (Hansen
et al., 2011), and 6Li-133Cs (Repp et al., 2013; Tung et al.,
2013). This experimental success opens up a further gateway
for exploring striking quantum many-body phenomena

FIG. 14 (color online). A short laser pulse near the trap center

could excite the charge density and spin density wave packets in a

harmonic trapped Fermi gas. Charge and spin velocities can be

manifested in a spatial separation of the spin (solid curve) and

density (dashed curve) wave packets. From Recati et al., 2003.
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through tuning interactions between inter- and intraspecies
of atoms.

In light of the experimental realizations of Fermi-Bose
mixtures, various theoretical methods have been used to study
phases of superfluids and Mott insulators, instabilities of
collapse and demixing, and quantum correlations of the 1D
Fermi-Bose mixtures, such as the mean-field approach (Das,
2003), the TLL theory (Cazalilla and Ho, 2003; Lewenstein
et al., 2004; Mathey et al., 2004; Mathey, 2007; Rizzi and
Imambekov, 2008; Orignac, Tsuchiizu, and Suzumura, 2010),
and numerical methods (Takeuchi and Mori, 2007; Pollet
et al., 2008; Varney, Rousseau, and Scalettar, 2008; Zujev
et al., 2008). The TLL field theory (Cazalilla and Ho, 2003;
Mathey et al., 2004; Rizzi et al., 2008) predicts that the
binary mixtures of bosons and spin-polarized fermions with
population imbalance present competing ordering such as
(i) a strong attraction between the two species leads to
collapse, (ii) a strong repulsion leads to demixing, and
(iii) subtle tuning of the intra- and interparticle scattering
leads to pairing and two-component TLLs.

On the other hand, the 1D Fermi-Bose mixture with equal
masses of bosons and spin-polarized fermions and with the
same strength of delta-function interaction between boson-
boson, boson-fermion, and fermions with different spins was
solved a long time ago (Lai and Yang, 1971; Lai, 1974b). The
exactly solved model provides a benchmark toward under-
standing various quantum many-body effects in 1D Fermi and
Bose mixtures. Recently, particular theoretical interest was
paid to the ground state properties (Hu, Zhang, and Li, 2006;
Imambekov and Demler, 2006a, 2006b; Girardeau and
Minguzzi, 2007; Chen, Cao, and Gu, 2010), magnetism
(Batchelor et al., 2005a; Imambekov and Demler, 2006b;
Guan, Batchelor, and Lee, 2008), correlation functions
(Frahm and Palacios, 2005; Imambekov and Demler,
2006b; B. Fang et al., 2011), and thermodynamics and quan-
tum criticality (Yin, Chen, and Zhang, 2009; Yin et al., 2012).

A. Ground state

The 1D delta-function interacting mixture of Mb spinless
bosons and M1 fermions with spin up and M2 fermions with
spin down is described by the Hamiltonian (2) with Zeeman
term ð1=2ÞHðM1 �M2Þ. H is an external magnetic field. The
Bethe wave function for this model requires symmetry under
exchange of spatial and internal spin coordinates between two
bosons or fermions with different spin states and antisymmetry
for two fermions with the same spin state. The BA equations
for this Fermi-Bose mixture with an irreducible representation
½2þMb;2

M2�1;1M1�M2� are (Lai and Yang, 1971)

expðikjLÞ¼
YM
�¼1

e1ðkj���Þ;

YN
j¼1

e1ð���kjÞ
YMb

b¼1

e1ð���AbÞ¼�YM
¼1

e2ð����Þ;

YM
k¼1

e1ðAb��kÞ¼1;

(65)

whereM ¼ M2 þMb. In these equations kj with j ¼ 1; . . . ; N

are the quasimomenta of the particles and �� with

� ¼ 1; . . . ;M are parameters for fermions with spin down
and the bosons. Ab with b ¼ 1; . . . ;Mb are the parameters
for the bosons.

Lai and Yang (1971) showed by numerically solving the set
of coupled integral equations that the energy of the system for
the mixture of bosons and polarized fermions is a monotonic
decreasing function with respect to the ratio of bosons and the
total number of particles in the system. The ground state
properties of the system have been further studied
(Batchelor et al., 2005a; Frahm and Palacios, 2005).

The magnetic properties of the mixture of bosons and
polarized fermions provide further insight into the competing
ordering. Application of the external magnetic field to the
polarized fermions causes Zeeman splitting of the spin-up
and spin-down fermions into different energy levels. The
ground state can accommodate only fermions that are in
the lower energy level. Therefore it is expected that when the
direction of the magnetic field is along the spin-up
(H > 0) direction, spin-down fermions can no longer populate
the ground state. The free energy of the strongly coupled
mixture is given in the formF ¼ �ðn�mbÞH=2þ E0, where
the ground state energy per unit length is given by (Imambekov
and Demler, 2006a, 2006b; Guan, Batchelor, and Lee, 2008)

E0 ¼ 1

3
�2n3

�
1� 4




�
mb

n
þ sinðmb�=nÞ

�

�

þ 12


2

�
mb

n
þ sinðmb�=nÞ

�

�
2
�
: (66)

Here nb is the boson number density. If the external field
exceeds the critical field Hc ¼ 8p0=c, where the pressure
per unit length is given by

P0 � 2

3
n3�2

�
1� 6




�
mb

n
þ sinðmb�=nÞ

�

��
;

the system enters a phase of fully polarized fermions. The
susceptibility in the vicinity of the critical fieldHc diverges as

� � n

2�

1

H1=2ðHc �HÞ1=2 : (67)

This van Hove type of singularity is subtly different from the
linear field-dependent magnetization in the two-component
attractive Fermi gas with polarization, where the effective
interaction between the bosonic pairs is weakly attractive in
the Tonks-Girardeau limit (Chen, Cao, and Gu, 2010).

In contrast, for weak repulsion the ground state energy
presents a mean-field effect, i.e., the energy per unit length is

E0 � M3
1

L3
þM2

bc

L2
þ 2MbM1c

L2
: (68)

The magnetization

mz � 1

4�

� ffiffiffiffiffiffiffi
2H

p þ 2c

�

�

and the susceptibility

� �
ffiffiffi
2

p

8�
ffiffiffiffiffi
H

p

follow from this equation. These results show that in the weak
coupling regime the square-root field-dependent behavior of
magnetization emerges for finite external field.
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Furthermore, using CFT, Frahm and Palacios (2005) com-
puted the asymptotics of boson and fermion Green’s functions
for a mixture of bosons and polarized and unpolarized fermi-
ons. The Fourier transform of equal-time boson Green’s func-
tion has a form nbðkÞ � jk� k0j�b . The response function of
fermions follows a form n�ðkÞ � sinðk� k0Þjk� k0j�f . The
exponents nb and �f are determined by finite-size energies and

momenta. The presence of spin population imbalance of fer-
mions gives rise to different critical exponents. In fact, the
exact result indicates that no demixing occurs in the Fermi-
Bose mixture with a repulsive interaction. A thorough study of
the ground state properties, including density distributions and
the single-particle correlation functions, was reported in
Imambekov and Demler (2006b). Using an exact solution
with local density approximation in a harmonic trap, the
density profiles of the Fermi-Bose mixture were predicted.
In the weakly interacting regime, bosons can condense to the
trapping center whereas fermions spread out due to the Fermi
pressure. For strong repulsion, the boson density distribution is
extended in a wider region and the fermion density shows
strong nonmonotonous behavior; see Fig. 15.

B. Universal thermodynamics

The fully polarized Fermi-Bose mixture is described by the
Hamiltonian

H ¼
Z L

0
dx

�
ℏ2

2mb

@x�
y
b@x�b þ ℏ2

2mf

@x�
y
f@x�f

þ gbb
2

�y
b�

y
b�b�b þ gbf�

y
b�

y
f�f�b

��f�
y
f�f ��b�

y
b�b

�
; (69)

where �b and �f are boson and fermion field operators, mb

and mf are the masses, �b and �f are chemical potentials of

bosons and fermions, and gbb and gbf are boson-boson and

boson-fermion interaction strengths, respectively.
For bosons and fermions of equal mass and equal interac-

tion strength gbb ¼ gbf, a different set of BA equations from

Eq. (65) were derived (Imambekov and Demler, 2006a,
2006b) with

expðikjLÞ¼
YMb

�¼1

e1ðkj���Þ;
YN
i¼1

e1ðki���Þ¼1; (70)

where j ¼ 1; . . . ; N and � ¼ 1; . . . ;M. Here Mb is the num-
ber of bosons. The BA equations (65) with a particular choice
of fermion spin polarization are physically equivalent to
Eq. (70). This can be seen from the fact that the ground state
energy of the model (69) is given by the same expression as
Eq. (66), where the spin-down fermions are gap filled.

At finite temperatures, the equilibrium states become de-
generate. The thermodynamics of the model are determined
from the integral equations (Lai, 1974a; Yin, Chen, and
Zhang, 2009)

�ðkÞ¼k2��f�T
Z 1

�1
K1ð��kÞlnð1þe�’ð�Þ=TÞd�;

’ð�Þ¼�f��b�T
Z 1

�1
K1ðk��Þlnð1þe��ðkÞ=TÞdk:

(71)

For fixed temperature T and chemical potential �f, �b, the

pressure is given by P ¼ ðT=2�ÞR1
�1 lnð1þ e��ðkÞ=TÞdk.

In this grand canonical ensemble, it is convenient to use the
chemical potential � and the chemical bias H ¼ �f ��b to

discuss the zero-temperature phase diagram of the model
(Yin et al., 2012); see Fig. 16. The phase boundaries were
determined by analyzing the dressed energy equations ob-
tained from the TBA equations (71) in the limit T ! 0. The
critical line

~Hc ¼ 1

2�
½ð4 ~�f þ 1Þ arctan

ffiffiffiffiffiffiffiffiffi
4 ~�f

q
�

ffiffiffiffiffiffiffiffiffi
4 ~�f

q
� (72)

separates the mixed phase and the pure fermion phase. Here
dimensionless units have been used, i.e., ~H ¼ H=�0 and
~�f ¼ �f=�0 with �0 ¼ c2. In a harmonic trap, this phase

diagram can be presented within the LDA, i.e., �0
bðxÞ þ

m!2
bx

2=2 ¼ �0
bð0Þ and �0

fðxÞ þm!2
fx

2=2 ¼ �0
fð0Þ. It was

x
xf

bosonsfermions
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FIG. 15. Density profile of Fermi-Bose mixture in strong coupling

regime 
 � 1. At zero temperature, fermions sit at the wings while

the trapping center comprises a mixture of fermions and bosons.

From Imambekov and Demler, 2006b.

FIG. 16 (color online). Phase diagram in the �-H plane. Three

distinguished phases result from varying the chemical potential and

the chemical potential difference H ¼ �f ��b: the pure boson

phase for H < 0 and �>H=2, the pure fermion phase below the

phase boundary ~Hc in the region �>�H=2, and the mixture of

bosons and fermions above the phase boundary ~Hc in the region

H > 0. From Yin et al., 2012.
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found (Imambekov and Demler, 2006b; Yin, Chen, and
Zhang, 2009) that for both strong and weak interactions
bosons and fermions coexist in the central part and fermions
sit at the wings. For weak interaction, bosons can condense
into the center while the fermions spread out in the whole
trapping space due to Fermi pressure. However, for the strong
interaction regime, the Fermi density shows strong nonmo-
notonous behavior (Imambekov and Demler, 2006b; Yin,
Chen, and Zhang, 2009). The significant feature of correla-
tion functions of the mixture in the Tonks-Girardeau limit
were discussed in detail (Imambekov and Demler, 2006b).
In particular, the Fourier transform of the Bose-Bose corre-
lation function is governed by the TLL parameter Kb via
nbðkÞ � jkj�1þ1=ð2KbÞ for k ! 0 and the Fourier transform of
the Fermi-Fermi correlation function has singularities at
k ¼ kf, kf þ 2kb. The discontinuity at kf þ 2kb indicates

an interaction effect.
The TBA equations (71) have been used to explore scaling

behavior of the thermodynamics in the Fermi-Bose mixture.
The universal leading order temperature corrections to the
free energy (Yin et al., 2012)

F � E0 � �CT2

6

�
1

vb

þ 1

vf

�
(73)

indicate a collective TLL signature at low temperatures.
In the strongly repulsive regime for H � 1

vs ¼ 4�2n

3

sin

�nb
n

;

vf ¼ 2�n

�
1� 4




�
�nb
n

þ sin
�nb
n

��
:

As already remarked, the TLL description is incapable of
describing quantum criticality since it does not contain the
right fluctuations in the critical regime. For the physical
regime, i.e., c � 1, or T="0 � 1, the pressure is

p ¼ �
ffiffiffiffiffiffiffi


4�

s
T3=2Li3=2ð�eA=TÞ: (74)

Here the functions  and A are determined by

 ¼ 1� 2Tc

�

Z 1

�1
4c2 � 48�2

ðc2 þ 4�2Þ3 lnð1þ e�’ð�Þ=TÞd�;

A � �f þ T
Z 1

�1
K1ð�Þ lnð1þ e�’ð�Þ=TÞd�:

The function ’ð�Þ can be obtained from Eq. (71) by iteration
(Yin et al., 2012).

The equation of state (74) can be used to explore the
critical behavior of the model. For example, the entropy in
Fig. 17 shows that the TLL is maintained below a crossover
temperature at which the linear temperature-dependent en-
tropy breaks down. In Fig. 17, TLLF denotes a TLL of fully
polarized fermions and TLLM denotes a two-component TLL
of the mixture of bosons and fermions described by Eq. (73).
As the temperature is tuned over the crossover temperatures
the scaling function of thermodynamic properties gives rise to
the free fermion universality class of criticality that entirely
depends on the symmetry excitation spectrum and dimension-
ality of the system. The equation of state pressure, determined

by Eq. (74), contains universal scaling functions which con-

trol the thermodynamic properties in the quantum critical

regimes. Near the critical point, the thermal dynamical prop-

erties can be cast into universal scaling forms, e.g., Eqs. (53)

and (54) for a free-Fermi theory of criticality, i.e., with d ¼ 1,
z ¼ 2, and � ¼ 1=2. A detailed analysis of quantum critical-

ity of the Fermi-Bose mixture has been presented by Yin et al.

(2012). As for the Fermi system, with the help of the

exact solutions the critical properties of the bulk system

can be mapped out from the density profiles of the trapped

Fermi-Bose mixture gas at finite temperatures.

V. MULTICOMPONENT FERMI GASES OF ULTRACOLD

ATOMS

A. Pairs and trions in three-component systems

A pseudospin-1=2 system of interacting atomic fermions

has been experimentally realized by loading atoms within two

lowest hyperfine levels, i.e., states j1i and j2i. The interaction
strength can be controlled by tuning the scattering length

through Feshbach resonance. Weakly bound molecules exist

in the phase where the scattering length is small and positive.

These molecules can form a BEC. The tunability of the

scattering length across the Feshbach resonance leads to a

divergent scattering length. As a result the interactions can be

effectively enhanced. In the strong interacting limit, these

molecules may continuously transform into BCS pairs such

that the system reaches the BEC-BCS crossover (Bartenstein

et al., 2004; Regal, Greiner, and Jin, 2004; Zwierlein et al.,

2005). Universal many-body behavior is expected in the

crossover (unitarity) regime (Heiselberg, 2001; Ho, 2004).
It is of great interest that the third pseudospin state j3i is

added to the two-component Fermi gas (Modawi and Leggett,

1997; Bartenstein et al., 2005). In contrast to the two-

component case, three-component fermions possess new fea-

tures (Ho and Yip, 1999; Honerkamp and Hofstetter, 2004;

He, Jin, and Zhuang, 2006; Cherng, Refael, and Demler,

FIG. 17 (color online). Contour plot of entropy S vs chemical

potential from the exact solution, showing quantum criticality

driven by chemical potential for H ¼ 0:1"0. The crossover tem-

peratures (white squares and triangles) separate the vacuum TLLF

and TLLM from the quantum critical regimes. From Yin et al., 2012.
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2007; Rapp et al., 2007; Zhai, 2007; Bedaque and D’Incao,
2009; Inaba and Suga, 2009; Martikainen et al., 2009;
Miyatake, Inaba, and Suga, 2010; Ozawa and Baym, 2010).
As a consequence, BCS pairing can be favored by anisotro-
pies in three different ways, namely, atoms in three low
sublevels denoted by j1i, j2i, and j3i can form three possible
pairs j1i þ j2i, j2i þ j3i, and j1i þ j3i (Bartenstein et al.,
2005). Degenerate three-component fermions with tunable
interparticle scattering lengths a12, a23, and a13 open up the
possibility of novel many-body phenomena.

Specifically, strongly attractive three-component atomic
fermions can form spin-neutral three-body bound states called
trions. A degenerate Fermi gas of atoms in three different
hyperfine states of 6Li (Ottenstein et al., 2008) has been
created at a temperature T ¼ 0:37TF, where TF is the Fermi
temperature. The spin state mixture of ultracold fermionic
atoms has been further used to study subtle physics of three-
body recombination, atom-dimer scattering, the atomic
Efimov trimer, association and disassociation of the atom-
dimer collisions, etc. (Ottenstein et al., 2008; Braaten et al.,
2009; Ferlaino et al., 2009; Huckans et al., 2009; Pollack,
Dries, andHullet, 2009; Spiegelhalderet al., 2009;Wenz et al.,
2009; Zaccanti et al., 2009). In particular, the three-component
interacting fermions have received considerable interest in
the study of the quantum phase transition from a color super-
fluid to singlet trions (Cherng, Refael, andDemler, 2007; Rapp
et al., 2007); see Fig. 18. This study also sheds light on color
superconductivity of quark matter in nuclear physics.

1. Color pairing and trions

Loading three-component fermions with contact interac-
tion on a 1D optical lattice, the system, i.e., the 1D multi-
component Hubbard model, is no longer BA solvable
(Choy and Haldane, 1982). In terms of the bosonization
approach, it was found (Capponi et al., 2008; Azaria,
Capponi, and Lecheminant, 2009) that the low-energy phys-
ics of the 1D three-component Hubbard model shows the
formation of three-atom bound states, i.e., a quantum phase
transition from a color superfluid to the singlet trion state.
Motivated by such exotic phases, the 1D integrable three-
component Fermi gas with delta-function interactions
(Sutherland, 1968, 1975; Takahashi, 1970b; Yang, 1970)
has been studied to give a precise understanding of color

pairing and the trionic state (Guan et al., 2008; Liu, Hu, and
Drummond, 2008a; He et al., 2010).

The first quantized many-body Hamiltonian of the three-
component delta-function interacting Fermi gas is as defined
in Eq. (2), with an additional Zeeman energy term Ez ¼P

3
i¼1 N

i�iZð�i
B; BÞ. In this system, the fermions can occupy

three possible hyperfine levels (j1i, j2i, or j3i) with particle
number N1, N2, or N3, respectively (Sutherland, 1968;
Takahashi, 1970b; Yang, 1970). The Zeeman energy levels
�iZ are determined by the magnetic moments �i

B and the

magnetic field B. By convention, particle numbers in each
hyperfine state satisfy the relation N1 
 N2 
 N3. Thus the
particle numbers of unpaired fermions, pairs, and trions are,
respectively, given by N1 ¼ N1 � N2, N2 ¼ N2 � N3, and
N3 ¼ N3 for the attractive regime. The unequally spaced
Zeeman splitting in the three hyperfine levels can be charac-
terized by two independent parameters H1 ¼ ��� �1Zð�i

B; BÞ
and H2 ¼ �3Zð�i

B; BÞ � ��. Here �� ¼ P
3
�¼1 �

�
Z=3 is an average

Zeeman energy.
For the 1D three-component Fermi gas, the energy eigens-

pectrum is given in terms of the quasimomenta fkig of the
fermions via Eq. (10), which satisfy the BA equations
(Sutherland, 1968)

expðikjLÞ¼
YM1

‘¼1

e1ðkj��‘Þ;

YN
‘¼1

e1ð���k‘Þ¼�YM1

¼1

e2ð����Þ
YM2

‘¼1

e�1ð����‘Þ;

YM1

‘¼1

e1ð�m��‘Þ¼�YM2

‘¼1

e2ð�m��‘Þ: (75)

Here j ¼ 1; . . . ; N, � ¼ 1; . . . ;M1, and m ¼ 1; . . . ;M2. The
parameters f��; �mg are the rapidities for the internal hyper-
fine spin degrees of freedom. It is assumed that there are M2

fermions in state j3i, M1 �M2 fermions in state j2i, and
N �M1 fermions in state j1i. For the irreducible representa-
tion ½3N32N21N1 �, a three-column Young tableau encodes the
numbers of unpaired fermions, bound pairs, and trions given
by N1 ¼ N � 2M1 þM2, N2 ¼ M1 � 2M2, and N3 ¼ M2.

In the attractive regime, the BA equations (75) admit
complex string solutions for kj, i.e., three-body bound

states (trions) and two-body bound states (color pairing)
(Takahashi, 1970b; Yang, 1970; Schlottmann, 1993, 1994;
Guan et al., 2010; Lee and Guan, 2011). For arbitrary spin
polarization (i) there are N3 spin-neutral trions in the quasi-
momentum k space accompanied by N3 spin bound states in
the �-parameter space and N3 real roots in the �-parameter
space, (ii) N2 BCS bound pairs in k space accompanied by N2

real roots in � space, and (iii) N1 unpaired fermions in k
space. These root patterns are depicted in Fig. 19.

For weak attraction, we redefine the polarizations pi ¼
Ni=N with i ¼ 1, 2, and 3 and the energy EL2=N3 ¼ e0ð
Þ
with dimensionless parameter 
 ¼ cL=N. The ground state
energy follows from the BA equations (75) as (Lee, Guan,
and Batchelor, 2011)

e0ð
Þ ¼ 1
3p

3
1�

2 þ 1
3p

3
2�

2 þ 1
3p

3
3�

2

þ 2
½p1p2 þ p1p3 þ p2p3� þOð
2Þ: (76)

FIG. 18 (color online). Three-component fermionic atoms in an

optical lattice. The color pairing phase occurs for on-site attraction

U <Uc, whereas the trionic state occurs for U>Uc. From Rapp

et al., 2007.
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This result was also obtained from the Fredholm equations
(Guan, Ma, and Wilson, 2012). The leading order of the
interaction energy gives a two-body mean-field interaction
energy between the particles with different internal spin
states. The kinetic energy part indicates three free-Fermi
gases of different species.

For strong attraction (j
j � 1), these charge bound states
are stable and the system is strongly correlated. The corre-
sponding binding energies of the charge bound states are
given by �r ¼ ℏ2c2rðr2 � 1Þ=24m. Explicitly, the BCS pair
binding energy is �b ¼ ℏ2c2=4m and the binding energy for a
trion is �t ¼ ℏ2c2=m. Without loss of generality, the numbers
of trions N3, pairs N2, and unpaired fermions N1 are assumed
to be even. The explicit root patterns to the BA equations (75)
for trions, pairs, and single fermions are then

k3i ¼
8><
>:
�iþ ic;

�i;

�i� ic;

k2j ¼
	�jþ ic=2;

�j� ic=2;
k1‘¼k‘; (77)

where i ¼ 1; . . . ; N3, j ¼ 1; . . . ; N2, and ‘ ¼ 1; . . . ; N1; see
Fig. 19. The real parts of the bound states have a hard-core
signature, explicitly,

�i � ð2nð3Þ þ 1Þ�
3L

�3; �j � ð2nð2Þ þ 1Þ�
2L

�2;

k‘ � ð2nð1Þ þ 1Þ�
L

�1;

where nðrÞ ¼ �Nr=2;�Nr=2þ 1; . . . ; Nr=2� 1 with r ¼ 1,
2, and 3. Here �r ¼ 1þ Ar þ A2

r with the function

Ar¼
Xr�1

j¼1

X�
i¼j

4ni�ðr�2Þ
rðiþr�2jÞþ

X�
i¼rþ1

4ni�ð��r�1Þ
rði�rÞ ; (78)

where � ¼ 3 and �ðxÞ is the step function.
This result points to the interference effects among the

molecule states and excess single fermions. From these roots,
the ground state energy in the thermodynamic limit is given
explicitly by (Guan et al., 2008; Lee and Guan, 2011; Kuhn
and Foerster, 2012)

E

L
� X�

r¼1

�2n3r
3r

�
1þ 2

jcjAr þ 3

c2
A2
r

�
� X�

r¼2

nr�r (79)

with � ¼ 3. Here nr ¼ Nr=L and Nr is the number of r-atom
molecule states. In general the 1D interacting Fermi gases
with higher-spin symmetries have two distinguishing fea-
tures: (i) mean-field theory for the weak coupling regime,
and (ii) strongly correlated molecule states of different sizes
in the strongly attractive regime. The fundamental physics of
the model is determined by the set of equations (75) which
can be transformed to generalized Fredholm types of equa-
tions in the thermodynamic limit. The asymptotic expansion
solution of the Fredholm equations for arbitrary component
Fermi gas has been thoroughly studied (Guan, Ma, and
Wilson, 2012).

2. Quantum phase transitions and phase diagrams

The ground state energies (76) and (79) provide full phase
diagrams in theH1-H2 plane for the weak and strong coupling
regimes; see Fig. 20. The fields H1 and H2 are determined
through the relations (Guan et al., 2008; Kuhn and Foerster,
2012)

H1 ¼ @E=L

@n1
; H2 ¼ @E=L

@n2
(80)

with the constraint condition n ¼ n1 þ 2n2 þ 3n3. For the
strong coupling regime in the absence of Zeeman splitting,
i.e., H1 ¼ H2 ¼ 0, trions form a singlet ground state.
However, the Zeeman splitting can lift the SU(3) degeneracy
and drive the system into different phases. For small H1, a
transition from a trionic state into a mixture of trions and
pairs occurs asH2 exceeds the lower critical valueH

c1
2 . When

H2 is greater than the upper critical value Hc2
2 , a pure pairing

phase takes place. Trions and BCS pairs coexist when Hc1
2 <

H2 <Hc2
2 . These critical fields are derived from Eqs. (80)

(Guan et al., 2008; Kuhn and Foerster, 2012)

Hc1
2 � ℏ2n2

2m

�
5
2

6
� 2�2

81

�
1þ 8

27j
j �
1

27
2

��
;

Hc2
2 � ℏ2n2

2m

�
5
2

6
þ �2

8

�
1þ 20

27j
j �
1

36
2

��
:

The phase transitions from the color paired phase B to the
mixed phase Aþ B of pairs and unpaired fermions induced
by increasing H1 are reminiscent of those for the two-
component system discussed in Sec. III.A. This mixed phase
consisting of the BCS pairs and unpaired fermions is referred
to as the FFLO phase; see Fig. 20.

For small H2, a phase transition from a trionic into a
mixture of trions and unpaired fermions occurs as H1

increases. Using Eqs. (80), the trionic phase with zero polar-
ization forms a singlet ground state of trions when the field
H <Hc1

1 , whereas when H1 is greater than the upper critical

value Hc2
1 all trions are broken and the state becomes a

normal Fermi liquid; see Fig. 20. Here

FIG. 19 (color online). Schematic root pattern for three trions,

four color pairs, and six excess single fermions in the ground state.

For strongly attractive interaction, the unpaired and paired quasi-

momenta can penetrate into the central region occupied by tightly

bound trions. From Lee and Guan, 2011.
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Hc1
1 � ℏ2n2

2m

�
2
2

3
� �2

81

�
1þ 4

9j
j þ
1

9
2

��
;

Hc2
1 � ℏ2n2

2m

�
2
2

3
þ �2

�
1� 4

9j
j
��

:

In addition, for a certain regime ofH1 andH2, there is a phase
transition from the trionic state into the mixture of trions,
pairs, and unpaired fermions; see Fig. 20.

In the weak coupling regime, the critical fields can be
obtained from

H1 ¼ �2

3
ð2n21 þ n22 þ 4n1n2 þ 4n1n3 þ 2n2n3Þ

þ 2jcj
3

ð2n1 þ n2Þ;

H2 ¼ �2

3
ðn21 þ 2n22 þ 2n1n2 þ 2n1n3 þ 4n2n3Þ

þ 2jcj
3

ð2n2 þ n1Þ:

We see that either a mixture of BCS pairs and unpaired
fermions or a mixture of trions and unpaired fermions or a
mixture of trions, pairs, and unpaired fermions populates the
ground state for certain values of H1 and H2. These asymp-
totic results indeed agree well with the full phase diagram
determined from numerical solutions (Kuhn and Foerster,
2012); see Fig. 20. It is interesting to note that the pure paired
phase can be sustained under certain Zeeman splittings. In
this phase, the two lowest levels are almost degenerate for
certain tuning of H1 and H2. The persistence of this color
pairing phase is relevant for the study of phase transition
between the color BCS-pairing phase and the state of trions.

In the thermodynamic limit, the grand partition function
Z ¼ trðe�H=TÞ ¼ e�G=T is given in terms of the Gibbs free
energy G ¼ E��N �H1N1 �H2N2 � TS, where the
chemical potential �, the Zeeman energy EZ, and the entropy
S are given in terms of the densities of unpaired fermions,
charge bound states, trions, and spin strings, which are all
subject to the BA equations (75). The equilibrium states are
determined by minimizing the Gibbs free energy, which
gives rise to a set of coupled nonlinear integral equations—
the TBA equations for the dressed energies "a ða ¼ 1; 2; 3Þ
(Schlottmann, 1993, 1994; He et al., 2011; Lee and Guan,
2011). In the thermodynamic limit, the pressure p is defined
in terms of the Gibbs energy by p � �ð@G=@LÞ, including
three parts, pð1Þ, pð2Þ, and pð3Þ, for the pressure of unpaired
fermions, pairs, and trions, respectively, with

pðaÞ ¼ aT

2�

Z
dk lnð1þ e�"aðkÞ=TÞ: (81)

Here we set the Boltzmann constant kB ¼ 1.
The quantum phase transitions in the model with Zeeman

splitting can be analyzed via the dressed energy equations,
which are obtained from the TBA equations in the limit
T ! 0 as

�ð3Þð�Þ ¼ 3�2 � 2c2 � 3�� K2  �ð1Þð�Þ � ½K1 þ K3�
 �ð2Þð�Þ � ½K2 þ K4�  �ð3Þð�Þ;

�ð2Þð�Þ ¼ 2�2 � 2�� c2

2
�H2 � K1  �ð1Þð�Þ � K2

 �2ð�Þ � ½K1 þ K3�  �ð3Þð�Þ;
�ð1ÞðkÞ ¼ k2 ���H1 � K1  �ð2ÞðkÞ � K2  �ð3ÞðkÞ:

(82)

Here we denote Kn  �ðaÞðxÞ ¼
RQa�Qa

Knðx� yÞ�ðaÞðyÞdy. The
integration boundaries Qa characterize the ‘‘Fermi surfaces’’
at �ðaÞðQaÞ ¼ 0. The chemical potential and magnetization

FIG. 20 (color online). Ground state energy vs Zeeman splitting

for (a) strong interaction jcj ¼ 10 and (b) weak interaction jcj ¼
0:5 with n ¼ 1. A trion phase C, a pairing phase B, an unpaired

phase A, and four different mixtures of these states are revealed.

Good agreement is found between the analytical critical fields

(black lines) and the numerical solutions (white lines) of the TBA

equations (82). The pure trion phase C is present in the strong

coupling regime, whereas the color pairing phase is favored in the

weak coupling limit. From Kuhn and Foerster, 2012.
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are determined byH1,H2, g1D, and n through�@G=@� ¼ n,
�@G=@H1 ¼ n1, and �@G=@H2 ¼ n2. The dressed energy
equations (82) indicate effective interactions among trions,
pairs, and single fermions. If we denote effective chemical
potentials �t ¼ �þ �t=3 for trions, �b ¼ �þ �b=2þ
H2=2 for bound pairs, and �u ¼ �þH1 for unpaired fermi-
ons, the energy transfer relations among the binding energy,
the Zeeman energy, and the variation of chemical potentials
between different Fermi seas are given by (Guan et al., 2008)

H1 ¼ 2c2=3þ ð�u ��tÞ;
H2 ¼ 5c2=6þ 2ð�b ��tÞ;

H1 �H2=2 ¼ c2=4þ ð�u ��bÞ:
(83)

These equations determine the full phase diagram and the
critical fields triggered by the Zeeman splitting H1 and H2.
Indeed, Eqs. (83) give the results (76) and (79) in the weak
and strong coupling regimes. In the phase diagrams Fig. 21,
the phase boundaries can also be analytically determined
by analyzing the band fillings through the dressed energy
equations (82).

3. Universal thermodynamics of the three-component fermions

At low-temperature regimes, the TBA equations provide
universal thermodynamics of the attractive three-component
Fermi gas (He et al., 2010). In the grand canonical ensemble,
the unequal spaced Zeeman splitting leads to various phases
in the�-H plane; see Fig. 21. This�-H phase diagram can be
determined by the dressed energy equations (82). The quan-
tum phases at zero temperature persist due to the nature of
collective motion (forming TLL phases) for a certain tem-
perature range. Although there is no quantum phase transition
in 1D many-body systems at finite temperatures, quantum
criticality leads to a crossover from a relativistic dispersion to
a nonrelativistic dispersion between the TLL and the quantum
critical regime. The nature of the TLL physics is revealed
from the universal leading temperature corrections to the free
energy in the different phases demonstrated in Fig. 20, i.e.,

F � E0 � �T2

6

X
�

1

v�

; (84)

where the sum involves a term for each cluster component in
the phase. For example, 1=v2 þ 1=v3 for phase Bþ C. For
strong attraction,

vr � ℏ�nr
mr

�
1þ 2

jcjAr þ 3

c2
A2
r

�

with r ¼ 1, 2, and 3 are the velocities for unpaired fermions,
pairs, and trions, respectively. Here the functions Ar are given
by Eq. (78).

On the other hand, the pressure pðaÞ of trions, pairs, and
excess fermions can be obtained in an analytical manner
using the polylog function in the strong attractive regime,
with

pðaÞ ¼ �
ffiffiffiffiffiffiffi
a

4�

r
T3=2Li3=2ð�eA

ðaÞ=TÞ; (85)

for a ¼ 1, 2, and 3. Up to a few leading order terms, the
functions AðaÞ are

Að1Þ ¼ �þH1 � 2

jcjp
ð2Þ � 2

3jcjp
ð3Þ

þ Te�ð2H1�H2Þ=Te�J1=TI0ðJ1=TÞ;

Að2Þ ¼ 2�þ c2

2
þH2 � 4

jcjp
ð1Þ � 1

jcjp
ð2Þ � 16

9jcjp
ð3Þ

þ Te�ð2H2�H1Þ=Te�J2=TI0ðJ2=TÞ;
Að3Þ ¼ 3�þ 2c2 � 2

jcjp
ð1Þ � 8

3jcjp
ð2Þ � 1

jcjp
ð3Þ; (86)

where Ja ¼ 2pðaÞ=ajcj.
The total pressure p ¼ P

3
a¼1 p

ðaÞ provides a high precision
equation of state through iterations with Eq. (87). The
thermodynamics and critical behavior can be worked out in
a straightforward manner in terms of the polylog function.
The equation of state (85) covers not only the zero-
temperature result of the three-component strongly attractive
Fermi gas but also the TLL thermodynamics. This result
opens up further study of quantum criticality with respect
to the phase transitions when the parameters drive the system
across the phase boundaries of Fig. 21.

For the repulsive regime, the thermodynamics of the three-
component Fermi gas is determined by another set of TBA
equations (Schlottmann, 1993, 1994; He et al., 2011). In this
regime, spin-charge separation is a hallmark of the 1D three-
component Fermi gas. In the low-lying excitations, interact-
ing particles ‘‘split’’ into spins and charges as the temperature
tends to absolute zero. The collective motion of fermions with
only spin or charge, called spinons and chargons or holons
(the antiparticle of a chargon), which have different veloc-
ities. The three-component Fermi gas has Uð1Þ 	 SUð3Þ sym-
metry that leads to two sets of spin waves. It was shown (He
et al., 2011) that the low-temperature thermodynamics of
such a gas naturally separates into free Gaussian field theories
for the U(1) charge degree of freedom and two spin rapidities.
The free energy gives a universal low-temperature TLL
behavior, namely,

FIG. 21 (color online). The �-H phase diagrams for (a) equally

spaced Zeeman splitting and (b)–(d) unequally spaced Zeeman

splitting. From He et al., 2010.
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F � E0 � �T2

6

�
Cs

vs

þ Cc

vc

�
: (87)

The spin and charge velocities can be derived (He et al.,

2011) from vc ¼ "0ðk0Þ=2��cðk0Þ and vs ¼ �ðrÞ0
1 ð�0Þ=

2��sð�0Þ. For three-component fermions there are two spin
velocities vs1 and vs2, where vs1 ¼ vs2 for pure Zeeman
splitting. The central charge for the spin part is Cs ¼ 2 and
for the charge part Cc ¼ 1. The reason for the value Cs ¼ 2 is
because the SU(3)-invariant fermion model has two spin
‘‘Fermi seas’’ whose dependence on H is equal, i.e., we
considered the case where H1 ¼ H2 ¼ H.

Following the Wiener-Hopf method developed for the
study of the thermodynamics of Heisenberg spin chains
with SU(2) and SU(3) symmetries (Mezincescu and
Nepomechie, 1993; Mezincescu et al., 1993), the ground
state energy of the gas in a weak magnetic field is given by

E0 ¼ 1

3
n3�2

�
1� 2�n

3
ffiffiffi
3

p
c
� 2n ln3

c

�

� 9cH2

4n2�4

�
1þ �nffiffiffi

3
p

c
þ 3n ln3

c

�
:

Explicitly, the spin and charge velocities,

vs ¼ 4

9c
n2�3

�
1� �nffiffiffi

3
p

c
� 3n ln3

c

�
;

vc ¼ 2n�

�
1� 2n�

3
ffiffiffi
3

p
c
� 2n ln3

c

�
;

are derived in the strong repulsive regime. The spin velocity
tends to zero while the charge velocity tends to the Fermi
velocity as the interaction strength c ! 1. The low-
temperature properties of the equation of state follow from

P ¼ �
ffiffiffiffiffiffiffi
1

4�

s
T3=2Li3=2ð�eA=TÞ; (88)

where the potential function

A ¼ �þ 2�P

�
1

6
ffiffiffi
3

p
c
þ ln3

2�c

�
þ 3cH2

2�2P
þ cT2

2P
:

The thermodynamics obtained from this pressure covers the
universal thermodynamics of the TLL given by Eq. (87).

B. Ultracold fermions with higher-spin symmetries

1. Bosonization for spin-3=2 fermions with SOð5Þ symmetry

Spinor Bose gases with spin-independent short-range in-
teractions have a ferromagnetic ground state, i.e., the ground
state is always fully polarized. In contrast to the spinless Bose
gas, the spinor Bose gases with spin-exchange interactions
can display a different ground state, i.e., either a ferromag-
netic or an antiferromagnetic ground state solely depending
on the spin-exchange interaction (Ho, 1998; Ohmi and
Machida, 1998; Ho and Yip, 2000). In this regard, the 1D
spinor Fermi gases with a short-range delta-function and
spin-spin-exchange interactions are particularly interesting
due to the existence of various BCS-like pairing phases of
quantum liquids associated with the BA (Essler, Shlyapnikov,
and Tsvelik, 2009; Lee et al., 2009; Shlyapnikov and Tsvelik,

2011; Kuhn et al., 2012a, 2012b). Large-spin fermionic
systems also exhibit many new phases of matter which do
not appear in the usual spin-1=2 systems. In particular,
spin-3=2 systems possessing a generic SO(5) symmetry
have attracted much theoretical interest (Wu, Hu, and
Zhang, 2003; Lecheminant, Boulat, and Azaria, 2005; Wu,
2005, 2006). In these systems, s-wave scattering acquires
interaction in total spin singlet and quintet channels. The
two interacting channels present a hidden SO(5) symmetry
without fine-tuning. The spin-3=2 systems exhibit a quintet
pairing phase with total spin-2 and quartetting order as a
four-fermion counterpart of the Cooper pairing.

The Hamiltonian describing these SO(5)-invariant systems
reads (Wu, Hu, and Zhang, 2003; Wu, 2005,2006)

H¼
Z
dd
	 X
�¼�3=2;�1=2

c y
�ðrÞ

�
� ℏ2

2m
�2��

�
c �ðrÞ

þg0P
y
0;0ðrÞP0;0ðrÞþg2

X
‘¼�2;�1;0

Py
2;‘ðrÞP2;‘ðrÞ



; (89)

where d is the dimensionality and� is the chemical potential.

The operators Py
0;0 and Py

2;m denote the spin singlet and

quintet pairing operators given by

Py
F;mðrÞ ¼

X
�;

�
3

2

3

2
;F;m

��������32
3

2
;�


c y

�ðrÞc y
ðrÞ

with F ¼ 1, 2 and m ¼ �F;�Fþ 1; . . . ; F. Using the Dirac
matrices, the SO(5) algebra has been explicitly constructed
(Wu, Hu, and Zhang, 2003). The spin singlet pair and quintet
pair have been constructed in terms of the SO(5) scalar and
vector operators. The SO(5) generators commute with the
Hamiltonian (89). The models restore SU(4) symmetry when
g0 ¼ g2. The Fermi liquid theory of SO(5) symmetry de-
scribes different competing orders in the spin-3=2 continuum
and lattice models. The lattice version of the Hamiltonian
(89) can be viewed as the one-band generalized Hubbard
model exhibiting SO(5) symmetry at arbitrary filling and
SO(7) symmetry at half-filling (Wu, Hu, and Zhang, 2003;
Wu, 2005).

The SO(5) invariance can apply equally well in the one-
dimensional continuum model and the lattice model
(Lecheminant, Boulat, and Azaria, 2005; Wu, 2005, 2006).
Writing the left- and right-moving currents in terms of the SO
(5) scalar, vector, and tensor currents (Wu, 2005), the low-
energy physics can be described by an effective Hamiltonian
density, which can be treated by bosonization. The result
indicates two spin gap phases and various order parameters;
see Fig. 22. The TLL phase exists in the repulsive region g0 

g2 
 0 where Kc < 1. The quartetting phase ðBÞ has two
orders—the quasi-long-range-ordered superfluidity (QROS)
ðB:1Þ and charge density wave (CDW) of quartets ðB:2Þ. The
pairing phase ðCÞ separates into a spin singlet pairing phase
ðC:2Þ and dimenerization of spin Peierls order ðC:1Þ. Here the
competition between the quartetting and pairing phases is
characterized by the Ising duality. In this scenario, the low-
energy physics of 1D arbitrary half-spin fermions of ultracold
atoms has been studied by bosonization (Lecheminant,
Boulat, and Azaria, 2005; Nonne et al., 2010; Szirmai and
Lewenstein, 2011). See also a recent study on competing
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orders in 1D half-filed fermionic ultracold atoms in an
optical lattice (Nonne et al., 2011). Two different superfluid
orders, a confined BCS-pairing phase and a confined molecu-
lar superfluid, were found for F ¼ N � 1=2 fermionic
ultracold atoms.

2. Integrable spin-3=2 fermions with SOð5Þ symmetry

Controzzi and Tsvelik (2006) write that ‘‘although high
symmetries do not occur frequently in nature, they deserve
attention since every new symmetry brings with itself a
possibility of new physics’’ indicates a perspective of large-
spin fermionic atoms. Fortunately the 1D realization of
spin-3=2 fermions with SO(5) symmetry is exactly solved
under a suitable condition (Controzzi and Tsvelik, 2006;
Jiang, Cao, and Wang, 2009). In particular, Jiang, Cao, and
Wang (2009) found that the Hamiltonian (89) reduces to an
integrable many-body Hamiltonian

H ¼ �XN
j¼1

@2

@x2j
þXN

‘<j

ðc0 þ c2SjS‘Þ	ðxj � x‘Þ (90)

on a line c0=c2 ¼ �3=4. Here the coupling constants are
given by c0 ¼ ðg0 þ 2g2Þ=3 and c2 ¼ ðg2 � g0Þ=3. The in-
tegrable Hamiltonian (90) possesses SO(5) symmetry. But the
individual spin components are no longer conserved.
However, I1 ¼ N3=2 þ N3=2 þ N1=2 þ N1=2 þ N�3=2, I2 ¼
N3=2 � N�3=2, and I3 ¼ N1=2 � N�1=2 are three independent

conserved quantities. The integrability is guaranteed by the
two-body scattering matrix

Sjl¼
kj�kl�ið3c=2Þ
kj�klþið3c=2ÞP

0
jlþP1

jlþ
kj�kl�iðc=2Þ
kj�klþiðc=2ÞP

2
jlþP3

jl

which satisfies the YBE

S12ðk1 � k2ÞS13ðk1 � k3ÞS23ðk2 � k3Þ
¼ S23ðk2 � k3ÞS13ðk1 � k3ÞS12ðk2 � k3Þ: (91)

In the above equation, Pm
jl is the projection operator onto the

spin m channel.
The solution has been derived in terms of the BA (Jiang,

Cao, and Wang, 2009). In the repulsive regime, the low-
energy physics can be described by the spin-charge separa-
tion theory. The elementary spin excitations, including a
spin-3=2 spinon, a neutral spinon, and a spin-1=2 spinon,
have been studied (Jiang, Cao, and Wang, 2009); see Fig. 23.
Here we see that the charge excitations (a) indicate a particle-
hole type. The spin excitations (b) and (c) involve two real �
and � holes, respectively. The spin excitations (d) give two
string-2 hole excitations. These spin excitations are different
from the case of SU(4) symmetric fermions. For an attractive
interaction, competing pairing orders lead to quantum phases
of pairs and quartets. However, the BA equations give very
complicated root patterns. The study of the attractive inte-
grable SO(5) symmetric model still remains an open problem.

Although integrable spin systems with higher symmetries
have been extensively studied in the literature, exactly solved
models of fermionic ultracold atoms with higher-spin sym-
metry are still restricted to SUð2sþ 1Þ (Sutherland, 1968)
and Spð2sþ 1Þ (Jiang, Cao, and Wang, 2011). For spin-
dependent interaction, the spin-exchange interaction between
the ith and jth particles can be written as a summation of
spin projection operators Pm

ij in the channels with even total

spin m ¼ 0; 2; . . . ; 2s. The integrable Spð2sþ 1Þ-invariant
models of atomic fermions are artificially written as

H ¼ �XN
i¼1

@2

@x2i
þX

i�j

Vij	ðxi � xjÞ; (92)

where the interaction potential reads

Vij ¼ ð�1Þ2sþ1½sþ 1=2� ð�1Þ2s�cP0
ij þ c

X
m¼2;4;...;2s

Pm
ij:

The BA equations for the model (92) have been derived
(Jiang, Cao, and Wang, 2011). In addition, Melo and
Martins (2007) derived the BA solution of a many-body

2
g

1: g = g
0 2

A: Luttinger liquidC: Singlet Pairing

C.2 C.1

B.1

2: g0

B.2

B: Quartetting

3: g = 3 g
0 2

FIG. 22. Phase diagram of the 1D spin-3=2 Fermi gas with SO(5)

symmetry in terms of the singlet and quintet interaction channel

parameters g0 and g2. Various competing orders of singlet and

CDW pairing as well as QROS and CDW of quartets are formed.

From Wu, 2005.

FIG. 23 (color online). Charge and spin excitations: (a) charge

particle-hole excitations, (b) spin excitations of two real � holes in

the spin-� sector, (c) spin excitations of two real � holes in the

spin-� sector, and (d) spin excitations of two string-2 � holes in the

spin-� sector. From Jiang, Cao, and Wang, 2009.
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problem of interacting spin-s particles with an arbitrary U(1)
factorized S matrix.

The stability of spinor Fermi gases in tight waveguides was
discussed by del Campo, Muga, and Girardeau (2007).

C. Unified results for SUð�Þ Fermi gases

Fermionic alkaline-earth atoms provide unique opportuni-
ties to study exotic many-body physics in the context of
higher-spin symmetry, e.g., SUð�Þ with � ¼ 2I þ 1, where
I is the nuclear spin (Cazalilla, Ho, and Ueda, 2009; Hermele,
Gurarie, and Rey, 2009; Gorshkov et al., 2010).2 De Salvo
et al. (2010) created a degenerate gas of ultracold fermionic
atoms 87Sr (F ¼ I ¼ 9=2) in an optical trap. Taie et al. (2010)
reported the realization of a degenerate Fermi mixture of
two isotopes of ytterbium atoms 171Yb (I ¼ 1=2) and 173Yb
(I ¼ 5=2) with SUð2Þ 	 SUð6Þ symmetry. More recently
Taie et al. (2012) successfully realized the SU(6) symmetric
Mott-insulator state with the atomic Fermi gas of 173Yb in a
3D optical lattice. It was found that loading fermions adia-
batically into a higher symmetry Mott insulating state can
achieve lower temperatures than the SU(2) symmetry state
owing to differences in the entropy carried by isolated
hyperfine spins.

These alkaline-earth atoms have a particular filled electron
shell structure such that their nuclear spins decouple from the
electronic angular momentum J in these two states. This
decoupling implies that the nuclear spins give the hyperfine
spins, i.e., F ¼ I. For these atomic systems, the 2I þ 1
hyperfine levels are likely to display SUð2I þ 1Þ symmetry
where the s-wave scattering lengths are independent of the
nuclear spins. Such fermionic systems with enlarged symme-
tries are motivated to simulate quantum many-body phe-
nomena (Hermele, Gurarie, and Rey, 2009; Gorshkov et al.,
2010; Xu, 2010) which may shed light on physics of strongly
correlated transition-metal oxides, heavy-fermion materials,
and spin-liquid phases. In contrast to the weaker quantum
spin effect for a composite object with larger spin in solid
state, large-hyperfine spins can be essential to the quantum
magnetic states (Wu, Hu, and Zhang, 2003; Cazalilla, Ho, and
Ueda, 2009; Gorshkov et al., 2010; Wu, 2010; Xu, 2010)
because spin fluctuations are accommodated in a large num-
ber of hyperfine spin states. Large-hyperfine fermions may
also be used to study Cooper pairing phenomena within
hyperfine spins (Ho and Yip, 1999) and quantum information
(Daley et al., 2008; Gorshkov et al., 2009).

The Hamiltonian for the 1D N-body delta-function
interacting fermion problem (Sutherland, 1968) is again as
defined in Eq. (2). There are now � possible hyperfine states
j1i; j2i; . . . ; j�i that the fermions can occupy. This system has
SUð�Þ spin symmetry and U(1) charge symmetry. For an
irreducible representation ½�N�; ð�� 1ÞN��1 ; . . . ; 2N2 ; 1N1�,
the Young diagram has � columns with the quantum numbers
Ni ¼ Ni � Niþ1. Here Ni is the number of fermions at the ith
hyperfine level such that N1 
 N2 
 � � � 
 N�. The ground
state properties and thermodynamics of 1D SUð�Þ-invariant
Fermi gases have been studied by means of the BA solution,

e.g., the three-component Fermi gas (Guan et al., 2008; Liu,
Hu, and Drummond, 2008a; He et al., 2010), SU(4)-invariant
spin-3=2 fermions (Guan et al., 2009; Schlottmann and
Zvyagin, 2012a, 2012b, 2012c), and �-component fermions
(Schlottmann, 1993, 1994; Guan et al., 2010; Lee and
Guan, 2011; Yang and You, 2011; Yin, Guan, Batchelor,
and Chen, 2011).

1. Ground state energy

For the ground state of the SUð�Þ-invariant Fermi gas, the
generalized Fredholm equations for c > 0 are given by
(Sutherland, 1968)

r0ðkÞ ¼ 0 þ
Z B1

�B1

K1ðk� k0Þr1ðk0Þdk0;

rmðkÞ ¼
Xmþ1

�¼m�1

Z B�

�B�

K1þ	�m
ðk� �Þr�ð�Þd�;

(93)

where 1 � m � �� 1 and 0 ¼ 1=ð2�Þ, r0ðkÞ is the particle
quasimomentum distribution function, whereas rmðkÞ with
m 
 1 are the distribution functions for the �� 1 spin
rapidities. The ground state energy E per unit length is given

by E ¼ RB0�B0
k2r0ðkÞdk. For the balanced case, the integra-

tion boundaries Bm with m 
 1 are infinitely large. Thus the
distributions are given by (Guan, Ma, and Wilson, 2012)

rmð�Þ ¼ 1

2�

Z 1

�1
~rmð!Þe�i!�d!;

where

~rmð!Þ ¼ ~r0inð!Þ sinh½ð1=2Þð��mÞj!jc�
sinh½ð1=2Þ�j!jc� (94)

with m ¼ 1; . . . ; �� 1.
For strong repulsion, i.e., cL=N � 1, the ground state

energy of the balanced �-component Fermi gas follows as
(Guan, Ma, and Wilson, 2012)

E � n3�2

3

�
1� 4Z1



þ 12Z2

1


2
� 32


3

�
Z3
1 �

Z3�
2

15

��
(95)

with the constants Z1 ¼ �ð1=�Þ½c ð1=�Þ þ C� and Z3 ¼
��3½�ð3; 1=�Þ � �ð3Þ�. Here �ðz; qÞ and �ðzÞ are the
Riemann zeta functions, c ðpÞ denotes the Euler psi function,
and C is the Euler constant. For � ! 1, it is seen that
lim�!1Z1 ¼ lim�!1Z3 ¼ 1. This indicates an insight into
the hyperfine spin effect—the ground state energy (95) re-
duces to the energy of the spinless Bose gas as c ! 1. This
result was first noticed by Yang and You (2011) by means of
the Fredholm equations (93). The suppression of the hyper-
fine spin effect is further manifest in the ground state energy
per unit length for the highly polarized case, which reads

E ¼ n3�2

3

	
1� 8m1

c
þ 48m2

1

c2
� 256m3

1

c3
þ 32�2m1n

2

5c3




þOðc�4Þ; (96)

where m1 ¼ M1=L with M1 ¼
P

��1
j¼1 N

jþ1 � N. This result

shows that spin variation does not play an essential role in the
ground state due to the strong repulsion. However, for small
polarization, i.e., a small external field lifting the SUð�Þ

2In this section we use the symbol � to avoid any confusion with

the number of particles N.
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symmetry, the integral boundaries Bm with m 
 1 are very
large. In this case, logarithmic singularities arise in the zero-
temperature susceptibility. This configuration is drastically
changed as the interaction is decreased.

For the weak coupling limit, the mean-field result for the
ground state energy per unit length is

E ¼ 1

3

X�
i¼1

p3
i �

2 þ 2c
X��1

i¼1

X�
j¼iþ1

pipj þOðc2Þ: (97)

Here pi ¼ Ni=N with i ¼ 1; 2; . . . ; �� 1 denoting the polar-
izations, andNi is the number of fermions in the ith level. The
first part is the kinetic energy of the �-component fermions
whereas the second part is the interaction energy. This result
is valid for arbitrary spin imbalance in the weakly repulsive
and attractive regime. The higher order corrections have not
been obtained. For the balanced case, i.e., Ni ¼ N=�, the
energy is

E ¼ �2n3

3�2
þ cð�� 1Þn2=�þOðc2Þ

which is the same as for spinless bosons with a weak repul-
sion as � ! 1. The ground state properties for the limits c ¼
0þ and c ! 1 have been discussed by Schlottmann (1997).

In the attractive regime, the complex string solutions for kj
form m-atom bound states up to length 2; . . . ; � with the

binding energy for a bound state "ð‘Þb ¼ ‘ð‘2 � 1Þc2=12.
Such bound states were studied by Gu and Yang (1989). A
bound state in quasimomentum space of lengthm takes on the

form km;j
� ¼ �ðm�1Þ

� þ iðmþ 1� 2jÞjc0j þOð expð�	LÞÞ,
where j ¼ 1; . . . ; m. The number of bound states with length

1 � m � � is denoted by Nm. The real part is �ðm�1Þ
� . The

unpaired atoms have real quasimomenta ki. Takahashi
(1970b) derived the Fredholm equations for the attractive
Fermi gas with an arbitrary number of components

�mð�Þ ¼ m0 þ
Xm�1

r¼1

X�
s¼r

Z Qs

�Qs

Ksþm�2rð���Þ�sð�Þd�

þ X�
s¼mþ1

Z Qs

�Qs

Ks�mð���Þ�sð�Þd�; (98)

where �1ðkÞ is the density distribution function of single
fermions, and �mðkÞ is the density distribution function
for the m-atom bound state with 1<m � �. The total num-
ber of fermions is given by N ¼ P

�
m¼1 mNm. The integration

boundariesQm, characterizing the Fermi points in each Fermi

sea, are determined by nm :¼ Nm=L ¼ RQm�Qm
�mðkÞdk. The

ground state energy per unit length is given by

E ¼ X�
m¼1

Z Qm

�Qm

�
mk2 �mðm2 � 1Þ

12
c2
�
�mðkÞdk:

For weak attraction jcjL=N � 1, the two sets of the
Fredholm equations (93) and (98) for the repulsive and
attractive regimes preserve the symmetry

�m ! r��m; Qm ! B��m;Z Qm

�Qm

!
Z 1

�1
�
Z B��m

�B��m

; c ! �c: (99)

Indeed, the ground state energy of the �-component Fermi
gas with weak attraction has the same closed form as Eq. (97)

with the replacement c ! �c. This means that the ground
state energy of the �-component gas with arbitrary polariza-

tion continuously connects at c ¼ 0.
For strong attraction jcjL=N � 1, the bound states of

different sizes form tightly bound molecules of different
sizes. In this regime, all the Fermi momenta of the molecules

are finite, i.e., jcj � Qm with m ¼ 1; . . . ; �. Here Q1 char-
acterizes the Fermi momentum of the single spin-aligned
atoms. Therefore, in this regime the strong coupling condition

allows one to expand the Fredholm equation (98) in powers of
1=jcj. The ground state energy per unit length of the gas with

arbitrary polarization in the strong attractive regime is given

by E ¼ P
�
m¼1ðEm � nm"

ðmÞ
b Þ. The energy E‘ of the cluster

state of an ‘ atom is given by (Guan, Ma, and Wilson, 2012)

Em��2N3
m

3mL3

	
1þ 8

mLjcjFmþ 48

m2L2jcj2F
2
m

þ 256

m3L3jcj3F
3
mþ 16�2

m3L3jcj3 ½�Gmþ �Gm=15�


:

(100)

The coefficients Fm, Gm, and �Gm can be found in Guan
(2012).

This closed form for the ground state energy with arbitrary
polarization is very accurate for a finitely strong attraction

(for jcj> 5). This high precision ground state energy has
been given for the two-component attractive Fermi gas (Iida

and Wadati, 2007; He et al., 2009; Zhou, Xu, and Ma, 2012).
Up to order 1=
2, the above ground state energy of 1D
�-component fermions with arbitrary population imbalance

can be further simplified to the general form given in Eq. (79).
From the result (100) one can obtain full phase diagrams

and magnetism at zero temperature. In particular, for the
three-component Fermi gases (Guan et al., 2008; Lee and

Guan, 2011; Kuhn and Foerster, 2012), spin-3=2 Fermi gas
with SU(3) symmetry (Guan et al., 2009; Schlottmann and

Zvyagin, 2012a), spin-5=2, 7=2, and 9=2 attractive Fermi
gases (Schlottmann and Zvyagin, 2012b, 2012c), and SUð�Þ
Fermi gases (Schlottmann, 1993, 1994; Guan et al., 2010;

Lee and Guan, 2011; Yang and You, 2011; Yin, Guan,
Batchelor, and Chen, 2011).

TheSUð�Þ symmetry requires each hyperfine spin state to be
conserved. Therefore, there are � chemical potentials associ-

ated with each spin state. For convenience in analyzing the
quantum phases of the multicomponent attractive Fermi gas,

the Zeemann energy is chosen as Ez=L ¼ �P
��1
‘¼1 n‘H‘,

where H‘ is an effective external field for the cluster state of
size ‘ atom. Here H1 denotes the chemical potential for un-

paired fermions. The particle numbers are changed by �N,
with� the total chemical potential. These effective fields result
in unequally spacing Zeeman splitting via �iþ1;i ¼ �Hi�1 þ
2Hi �Hiþ1. Here H� ¼ 0 because of the spin singlet state.

Defining the effective chemical potential of them-atom bound
state by �‘ ¼ �þ ðH‘ þ "‘bÞ=‘, the result
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�‘ ¼ 1

‘

@

@n‘

�
E

L
þ X�

�¼1

n�"
�
b

�

with‘ ¼ 1; . . . ; � canbe obtained from theground state energy.
The energy-field transfer relation between Hm and the

effective chemical potentials �m (Guan et al., 2010)

H‘ ¼ ‘ð�‘ ���Þ þm��
�

� �‘ (101)

determines full phase diagrams of the system in terms of the
effective fields Hm and chemical potentials. In the special
case of pure Zeeman splitting where �‘þ1;‘ ¼ � for all ‘, the
system has three distinct magnetic phases for a strong attrac-
tive regime. For weak coupling, even for pure Zeeman split-
ting, the phase diagram is very sophisticated; see Fig. 24.
Some subtle phase diagrams for the spin-3=2, -5=2, -7=2, and
-9=2 attractive Fermi gases have been studied (Guan et al.,
2009; Schlottmann and Zvyagin, 2012b, 2012c).

Furthermore, for the polarized phase, the cluster states
form multicomponent TLLs in the low-energy physics. The
low-lying excitations are described by the linear dispersion
relations !rðkÞ ¼ vrðk� krFÞ, where the velocities can be

calculated by

vr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

mnr

1

r

�
@2Er

@2L

�s
(102)

for a system featuring Galilean invariance. For a strong
attractive interaction, the velocities for unpaired fermions
and charge bound state of r fermions are given by

vr � ℏ�nr
mr

�
1þ 2

jcjAr þ 3

c2
A2
r

�

with r ¼ 1; . . . ; �. The function Ar is given by Eq. (78). These
dispersion relations naturally lead to the universal form
for finite-size corrections to the ground state energy E1

0

(Guan et al., 2010),

EðL;NÞ � LE1
0 � �ℏC

6L

X�
r¼1

vr: (103)

The central charge C ¼ 1 for U(1) symmetry. Here the
universal finite-size corrections (103) indicate the TLL sig-
nature of the many-body physics. In this case the low-energy
excitations of the system are described by the CFT of the
Gaussian model. In Sec. V.C.2, we discuss the thermodynamics
of these cluster states.

2. Universal thermodynamics of SUð�Þ-invariant fermions

Schlottmann (1993) derived the TBA equations for SUð�Þ
fermions with repulsive and attractive interaction. Lee, Guan,
and Batchelor (2011) derived a different set of TBA equations
which are more convenient for analysis of thermodynamics
and phase transitions for the attractive Fermi gas. To under-
stand the thermodynamics of this model, it is crucial to
separate different physical regimes, i.e., (1) the ground state
for T ! 0, (2) TLL phases T < j���cj and T < jH �Hcj,
(3) quantum criticality T > j���cj and T > jH �Hcj, and
(4) high temperatures T � c2. The TBA equations involve an
infinite number of coupled nonlinear integral equations. At
zero temperature, the phase diagrams can be analytically or
numerically obtained through the dressed energy equations
which can be derived from the TBA equations in the limit
T ! 0 (Schlottmann, 1993, 1994; Guan et al., 2010; You,
2010; Lee and Guan, 2011; Yang and You, 2011; Yin, Guan,
Batchelor, and Chen, 2011; Schlottmann and Zvyagin, 2012a,
2012b).

In the strongly attractive regime, the effective ferromag-
netic spin-spin coupling constants are given by JðrÞ �
ð2=rjcjÞpðrÞ for r ¼ 1; 2; . . . ; �� 1. pðrÞ is the pressure for
charge r-atom bound states. In this sense, we can simply view
the non-neutral charge bound state as a molecule with spin
s ¼ ð�þ 1Þ=2� r, which could flip its spin to form the spin-
wave bound states (spin strings) due to thermal fluctuations.
However, in the physically interesting regime where T � �r,
T � �iþ1i, and 
 � 1 the breaking of charge bound states
and spin-wave fluctuations is strongly suppressed. The spin-
string contributions to thermal fluctuations in this regime can
be asymptotically calculated from the TBA, i.e.,

fðrÞs � Te��rþ1r=Te�JðrÞ=TI0

�
JðrÞ

T

�
:

It is obvious that fðrÞs becomes exponentially small as T ! 0.
Thus each dressed energy can be written in a single-particle
form �rðkÞ ¼ ℏ2rk2=2m� ��ðrÞ þOð1=
3Þ, where the mar-
ginal scattering energies among composites and unpaired
fermions as well as spin-wave thermal fluctuations are
considered in the chemical potentials ��ðrÞ.

With the help of this simplification, the thermodynamics at
finite temperatures have been given as (Guan et al., 2010)

pðrÞ � �
ffiffiffiffiffiffiffiffiffiffiffiffi
rm

2�ℏ2

r
T3=2Li3=2ð�e ��ðrÞ=TÞ;

��ðrÞ � r�ðrÞ � Xr
j¼1

XN
i ¼ j

i � 2j� r

4pðiÞ

iðiþ r� 2jÞjcj þ fðrÞs

(104)

for r ¼ 1; . . . ; N. The total pressure of the system is given by
p ¼ PN

r¼1 p
ðrÞ. Here LisðxÞ is the standard polylog function.
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FIG. 24. Phase diagram of the 1D integrable spin-3=2 Fermi gas

with an attractive interaction and pure Zeeman splitting. Quantum

phases of single excess fermions (I), color BCS pairs (II),

trions (III), and quartets (IV) are displayed in the �-H plane for

jcj ¼ 1. The shaded area corresponds to the vacuum. From

Schlottmann and Zvyagin, 2012a.
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Furthermore, the suppression of spin fluctuations leads to a
universality class of a multicomponent TLL in each gapless
phase, where the charge bound states of r atoms form hard-
core composite particles, i.e., the leading low-temperature
corrections to the free energy reads

f � f0 � �T2

6ℏ

XN
r¼1

1

vr

: (105)

The velocity vr of the r-atom bound state is given by
Eq. (102). This result is consistent with the finite-size cor-
rection result (103). In Eq. (105) f0 ¼ E1

0 �P
N�1
r¼1 nrHr.

This result proves the existence of TLL phases in 1D gapped
systems at low temperatures. The existence of the TLL leads
to a crossover from a relativistic dispersion to a nonrelativ-
istic dispersion between different regimes at low tempera-
tures (Maeda, Hotta, and Oshikawa, 2007). Linear Zeeman
splitting may result in a two-component Luttinger liquid in a
large portion of Zeeman parameter space at low temperatures.

VI. CORRELATION FUNCTIONS

It is well established that the universality classes of critical
behavior of two-dimensional systems are described by a ra-
tional CFT, where the Hilbert space of states contains a direct
sum of irreducible representations of a Virasoro algebra. Using
the CFTone can calculate the critical exponents that character-
ize power-law decay of correlation functions at large distance
(Voit, 1995; Henkel, 1999; Essler et al., 2005). In general, CFT
predicts that the two-point correlation function for primary
fields with conformal dimension �� is of the form

h�ð�; yÞ�ð0; 0Þi ¼ expð2i�DkFyÞ
ðv�þ iyÞ2�þðv�� iyÞ2�� : (106)

Here � is the Euclidean time (�1< �<1, �L � y � 0)
and v is the velocity of light. The conformal dimensions ��
can be read off from the finite-size corrections of low-lying
excitations of 1D systems via

EQ � E0 ¼ 2�v

L
ðxþ Nþ þ N�Þ;

PQ � P0 ¼ 2�

L
ðsþ Nþ � N�Þ þ 2�DkF;

(107)

where x ¼ �þ þ �� is the conformal dimension and s ¼
�þ � �� is the conformal spin. The non-negative integers
Nþ and N� label the level of the descendant. �D represents
the number of particles backscattered.

Moreover, it was shown (Affleck, 1986; Blöte, Cardy, and
Nightingale, 1986; Cardy, 1986) that conformal invariance
gives a universal form for the finite temperature effects in the
free energy by replacing 1=L with T in the conformal map
z ¼ expð2�!=LÞ. Considering a conformal mapping of the
complex plane without the origin (corresponding to T ¼ 0)
onto a strip of width 1=T in the imaginary time direction, the
two-point correlation function at finite temperatures reads

h�ð�; yÞ�ð0; 0Þi ¼ e2i�DkFyfþT ðy� iv�Þf�T ðyþ iv�Þ
(108)

with f�T ðxÞ ¼ ð�T=vÞ2��
=½sinhð�T=vÞx�2��

. For such criti-

cal phenomena, the critical Hamiltonian of the gapless sector
exhibits not only global scale invariance but also local

conformal invariance, i.e., a local version of the scale invari-
ance. Thus the critical Hamiltonian can be approximately
described by the conformal Hamiltonian which is described
by the generators of the underlying Virasoro algebra with
central charge C.

The QISMprovides a systematic way to calculate the critical
exponents for BA integrable models. Bogoliubov, Izergin, and
Korepin (1986) derived explicit critical exponents for the XXX
and XXZ chains. In this approach, the dressed charge matrix
Z� formalism presents a unified framework to calculate the

conformal towers through the finite-size corrections to the
eigenspectrum of multicomponent BA systems (Izergin,
Korepin, and Reshetikhin, 1989). The universality class of
critical exponents is uniquely determined by the symmetry
of the models associated with the quantum R matrix.
Consequently, the asymptotic behavior of correlation functions
for integrable models, such as impenetrable Bose gas
(Its, Izergin, andKorepin, 1990), the supersymmetric t-Jmodel
(Kawakami and Yang, 1991), and the Hubbard model
(Woynarovich and Eckle, 1987; Woynarovich, 1989; Frahm
andKorepin, 1990, 1991), has been studied in the framework of
the QISM. In addition, exact results for the form factors have
been derived for several cases (Slavnov, 1989, 1990; Kojima,
Korepin, and Slavnov, 1997; Kitanine, Maillet, and Terras,
1999). Further developments in the theoretical study of corre-
lation functions have been reported (Gangardt andShlyapnikov,
2003a, 2003b; Caux and Calabrese, 2006; Calabrese and Caux,
2007; Caux, Calabrese, and Slavnov, 2007; Kitanine et al.,
2009; Kormos, Mussardo, and Trombettoni, 2009).

A. Correlation functions and the nature of FFLO pairing

As remarked in Sec. I, for a system with partial polariza-
tion, the Fermi energies of spin-up and spin-down electrons
are unlikely to match. This leads to a nonstandard form of
pairing known as the FFLO state. The power-law decay of the
pair correlation npair / cosðkFFLOjxjÞ=jxj� with the spatial
oscillations depending solely on the mismatch of the Fermi
surfaces kFFLO ¼ �ðn" � n#Þ has been identified numerically.

This spatial oscillation is a typical characteristic of the FFLO
pairing.

The FFLO-like pair correlations and spin correlation for
the attractive Hubbard model were investigated by several
groups via various methods, such as DMRG (Feiguin and
Heidrich-Meisner, 2007; Lüscher, Noack, and Läuchli, 2008;
Rizzi et al., 2008; Tezuka and Ueda, 2008, 2010), QMC
(Batrouni et al., 2008; Baur, Shumway, and Mueller, 2010;
Wolak et al., 2010), mean-field theory, and other methods
(Liu, Hu, and Drummond, 2007, 2008b; Parish et al., 2007;
Zhao and Liu, 2008; Datta, 2009; Edge and Cooper, 2009,
2010; Pei, Dukelsky, and Nazarewicz, 2010; Devreese,
Klimin, and Tempere, 2011; Kajala, Massel, and Törmä,
2011; Sun et al., 2011; Chen and Gao, 2012; Sun and
Bolech, 2012, 2013). The FFLO signature is displayed by

the on-site pair correlation function Oon-siteðzi; zjÞ :¼
h�0jĉyi;#ĉyi;"ĉj;"ĉj;#j�0i in the 1D attractive Hubbard model

(Tezuka and Ueda, 2008), where j�0i is the eigenstate for
the ground state of the system.

In Fig. 25, for polarization P ¼ 0, the on-site pair correla-
tion indicates a power-law decay without changing the sign
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(i.e., spatial oscillation). For low polarizationP ¼ 0:1, the pair
correlation function still has a power-law decay but periodi-
cally changes its sign. For P ¼ 0:4, the oscillation frequency
of the pair correlation becomes faster due to a large mismatch
of the two Fermi energies. The wave vector q of oscillations
q ¼ �kFFLO. Feiguin and Heidrich-Meisner (2007) showed
that the pair momentum distribution function has a peak at the
mismatch of the Fermi surfaces k ¼ �kFFLO, i.e.,

n
pair
k ¼ 1

L

X
lm

exp½ikðl�mÞ��pair
lm ; (109)

where the pair correlation �
pair
lm / j cosð�kFFLOjl�mjÞ=

jl�mj�ðPÞ; see Fig. 26. The correlation exponent �ðPÞ de-
pends on both the polarizationP and interaction strength. Such
a FFLO pairing wave number was also confirmed by the
occurrence of a peak in the pair momentum distribution cor-
responding to the difference between the Fermi momenta of
individual species (Batrouni et al., 2008; Rizzi et al., 2008;
Feiguin and Heidrich-Meisner, 2009; Heidrich-Meisner,
Feiguin et al., 2010).

On the other hand, the critical behavior of 1D many-body
systems with linear dispersion in the vicinities of their Fermi
points can be described by conformal field theory. The critical
behavior of the Hubbard model with attractive interaction
was investigated by Bogoliubov and Korepin (1988, 1989,
1990, 1992). As demonstrated in previous sections, the low-
energy physics of the homogeneous 1D Fermi gases with
polarization is described by the TLLs of bound pairs and

excess unpaired fermions in the charge sector and ferromag-
netic spin-spin interactions in the spin sector (Zhao et al.,
2009; Guan et al., 2010). This paves a way to study asymp-
totic behavior of various correlation functions by using CFT.
The method used to study correlation functions of the
spin-1=2 Fermi gas with attractive interaction closely follows
the method set out in the literature (Woynarovich, 1989;
Frahm and Korepin, 1990, 1991; Kawakami and Yang,
1991; Essler et al., 2005). Consequently, the asymptotic
correlation functions and FFLO signature of the 1D attractive
spin-1=2 Fermi gas have been analytically studied by the
dressed charge formalism (Lee and Guan, 2011). This study
can be carried out naturally for 1D attractive multicomponent
Fermi gases (Schlottmann and Zvyagin, 2012b).

In the gapless phase, the bound pairs and excess unpaired
fermions form two Fermi seas which can be described by a
two-component TLL, where the spin fluctuations are strongly
suppressed at low temperatures. The conformal dimensions of
two-point correlation functions of the 1D attractive spin-1=2
Fermi gas can be calculated from the elements of the dressed
charge matrix Z describing the finite-size corrections for
the low-lying excitations. The long distance asymptotics of
various correlation functions are then examined through the
dressed charge formalism at the T ¼ 0. The finite-size
corrections to the ground state energy were computed from
the BA equations, with result (Lee and Guan, 2011)

E0 � "10 � �

6L2

X
�¼u;b

v�; (110)

where vu and vb are the velocities of unpaired fermions and
bound pairs, respectively.

Three types of low-lying excitations are considered in the
calculations of finite-size corrections: a type 1 excitation is
characterized by moving a particle close to the right or left
Fermi points outside the Fermi sea; a type 2 excitation arises
from the change in total number of unpaired fermions or
bound pairs; and a type 3 excitation is caused by moving a
particle from the left Fermi point to the right Fermi point
and vice versa. Such kinds of excitation are also known as
backscattering. All three types of excitations can be unified in

FIG. 25 (color online). Left panels: The on-site pair correlation

function Oon-siteðzi; zjÞ in the zi-zj plane for polarization ðN"; N#Þ ¼
ðaÞ ð20; 20Þ, (b) (22, 18), and (c) (28, 12). Right panels: The axial

density distribution profiles in a harmonic trap. Numerical setting

with interacting strength U=t ¼ �4. From Tezuka and Ueda, 2008.
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FIG. 26 (color online). (a) Momentum distribution function of

pairs in the 1D attractive Hubbard model with U=t ¼ �8.
(b) Power-law decay behavior in real space and comparison of

the DMRG result (symbols) to the bosonization (lines). (c) The

positions of the peaks in the momentum distribution function npairk .

From Feiguin and Heidrich-Meisner, 2007.
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the following form of the finite-size corrections for the energy
and total momentum of the system (Lee and Guan, 2011):

�E¼2�

L

�
1

4
tð�NÞtðZ�1ÞVZ�1�Nþ tð�DÞZVZt�D

þ X
�¼u;b

v�ðNþ
� þN�

� Þ
�
;

�P¼2�

L

�
t�N�DþNu�DuþNb�Dbþ

X
�¼u;b

ðNþ
� �N�

� Þ
�
;

(111)

with the notation

�N ¼ �Nu

�Nb

 !
; �D ¼ �Du

�Db

 !
;

V ¼ vu 0

0 vb

 !
; Z ¼ ZuuðQuÞ ZubðQbÞ

ZbuðQuÞ ZbbðQbÞ

 !
:

Here the quantum numbers �Nu;b are characterized by the

change in quantum numbers (Lee and Guan, 2011)

�Du :¼�Nuþ�Nb

2
ðmod1Þ; �Db :¼�Nu

2
ðmod1Þ:

(112)

The dressed charges ZuuðQuÞ, ZubðQbÞ, ZbuðQuÞ, and ZbbðQbÞ
satisfy a set of dressed charge equations (Lee and Guan,
2011).

The finite-size spectrum is described by a critical theory
based on the product of two Virasoro algebras each
of which has a central charge C ¼ 1. The finite-size scaling
form of the energy (111) determines the critical exponents
of two-point correlation functions between primary fields
hOyðx; tÞOðx0; t0Þi. At zero temperature, the two-point
correlation functions take the form

hOðx;tÞOð0;0Þi

¼ exp½�2iðNu�DuþNb�DbÞð�=LÞx�
ðx�ivutÞ2�þ

u ðxþ ivutÞ2��
u ðx�ivbtÞ2�þ

b ðxþivbtÞ2��
b

:

(113)

The conformal dimensions are given by

2��
u ¼

�
Zuu�Du þ Zbu�Db � Zbb�Nu � Zub�Nb

2 detZ

�
2

þ 2N�
u ;

2��
b ¼

�
Zub�Du þ Zbb�Db � Zuu�Nb � Zbu�Nu

2 detZ

�
2

þ 2N�
b :

Here N�
� (� ¼ u, b) characterize the descendent fields from

the primary fields.

In this way the quantum numbers for the low-lying ex-
citations completely determine the nature of the asymptotic
behavior of these correlations. The exponential oscillating
term in the asymptotic behavior comes from the backscatter-
ing process. Various correlation functions, e.g., the single-
particle Green’s function G"ðx; tÞ, charge density correlation

function Gnnðx; tÞ, spin correlation function Gzðx; tÞ, and
pair correlation function Gpðx; tÞ, can be derived based

on the choice of ð�Nu;�NbÞ which define the quantum
numbers (112) (Lee and Guan, 2011). We now discuss these
correlation functions in detail.

The asymptotic form of the single-particle Green’s

function G"ðx; tÞ ¼ hc y
" ðx; tÞc "ð0; 0Þi is given by

G"ðx;tÞ� A";1 cos½�ðn" �2n#Þx�
jxþivutj�1 jxþivbtj�2

þ A";2 cosð�n"xÞ
jxþivutj�3 jxþivbtj�4

;

(114)

where the critical exponents for the strong coupling regime
are given in terms of the polarization by

�1 � 1þ 1� P

j
j ; �2 � 1

2
� 1� P

2j
j þ 4P

j
j ;

�3 � 1� 1� P

j
j ; �4 � 1

2
� 1� P

2j
j � 4P

j
j :

The constants A";1 and A";2 cannot be derived from the finite-

size corrections for low-lying excitations.
The asymptotic form of the pair correlation function

Gpðx; tÞ ¼ hc y
" ðx; tÞc y

# ðx; tÞc "ð0; 0Þc #ð0; 0Þi is given by

Gpðx; tÞ �
Ap;1 cos½�ðn" � n#Þx�
jxþ ivutj�1 jxþ ivbtj�2

þ Ap;2 cos½�ðn" � 3n#Þx�
jxþ ivutj�3 jxþ ivbtj�4

; (115)

where the critical exponents in the strong coupling regime are

�1 � 1

2
; �2 � 1

2
þ 1� P

2j
j ;

�3 � 1

2
þ 2ð1� PÞ

j
j ; �4 � 5

2
� 19P� 3

2j
j :

It is apparent that the leading order for the long distance
asymptotics of the pair correlation functionGpðx; tÞ oscillates
with wave number �kF, where �kF ¼ �ðn" � n#Þ.

The Cooper pair correlation has been further discussed
with a connection to CFT (Schlottmann and Zvyagin,
2012b). Moreover, the leading order for the charge density
correlation function Gnnðx; tÞ ¼ hnðx; tÞnð0; 0Þi and the spin
correlation functionGzðx; tÞ oscillates twice as fast with wave
number 2�kF, namely,

Gnnðx; tÞ � n2 þ Ann;1 cos½2�ðn" � n#Þx�
jxþ ivutj�1

þ Ann;2 cosð2�N#xÞ
jxþ ivbtj�2

þ Ann;3 cos½2�ðn" � 2n#Þx�
jxþ ivutj�3 jxþ ivbtj�4

;

Gzðx; tÞ � ðmzÞ2 þ Az;1 cos½2�ðn" � n#Þx�
jxþ ivutj�1

þ Az;2 cosð2�n#xÞ
jxþ ivbtj�2

þ Az;3 cos½2�ðn" � 2n#Þx�
jxþ ivutj�3 jxþ ivbtj�4

:

(116)
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Here Az;i and Ann are constants and the correlation
exponents are given by

�1 � 2; �2 � 2� 2ð1� PÞ
j
j ;

�3 � 2þ 4ð1� PÞ
j
j ; �4 � 2� 2ð1� PÞ

j
j þ 16P

j
j :

The oscillations inGpðx; tÞ,Gnnðx; tÞ, andGzðx; tÞ are caused
by the mismatch in Fermi surfaces between both species of
fermions. These spatial oscillations give a novel signature of the
Larkin-Ovchinikov pairing phase (Larkin and Ovchinnikov,
1965). This finding is consistent with the numerical results
from DMRG (Feiguin and Heidrich-Meisner, 2007; Lüscher,
Noack, and Läuchli, 2008; Rizzi et al., 2008; Tezuka and Ueda,
2008, 2010) and QMC (Batrouni et al., 2008; Baur, Shumway,
and Mueller, 2010; Wolak et al., 2010). It is remarkable to see
that the asymptotics of the spatial oscillation terms in the pair
and spin correlations are a consequence of type 3 excitations,
i.e., backscattering for bound pairs and unpaired fermions.
The asymptotic behavior of the Fermi field, Cooper pair, and
charge density wave correlation functions for the 1D attractive
Hubbard model were computed for the magnetic field
H ! Hc1 þ 0þ at the half-filled band (Bogoliubov and
Korepin, 1990).

Furthermore, the correlation functions in momentum
space can be given by taking the Fourier transform of their
counterparts in position space, i.e., the Fourier transform of
equal-time correlation functions reads

gðx; t ¼ 0þÞ ¼ expðik0xÞ
ðx� i0Þ2�þðxþ i0Þ2�� ; (117)

where �� ¼ ��
u þ��

b is given by

~gðk � k0Þ � ½sgnðk� k0Þ�2sjk� k0j�: (118)

Here the conformal spin of the operator is s ¼ �þ � �� and
the exponent � is expressed in terms of the conformal
dimensions by � ¼ 2ð�þ þ ��Þ � 1. However, experimen-
tal observation of this momentum distribution remains very
difficult because the transverse expansion dominates the
expansion along the axial direction (Bolech et al., 2012). In
this regard, it is practicable to consider the long-time behavior
of the distribution during the sudden expansion of spin-
imbalanced ultracold lattice fermions with an attraction after
turning off the longitudinal confining potential. However, the
existence of the FFLO signature in the expanding gas is still
in question (Bolech et al., 2012; Lu et al., 2012).

For fields above the lower critical field Hc1, these correla-
tors decrease as power laws. Thus the pairs lose their
dominance, i.e., three types of ordering coexist—
superconductivity, charge density waves, and spin density
waves. Indeed the FFLO correlation is more robust in the
1D homogenous attractive Fermi gas. In the experimental
setting discussed in Sec. VII, the quasi-1D system of ultracold

fermionic atoms is formed by loading into a bunch of quasi-
1D tubes created by two counterpropagating laser beams. By
tuning the intensity of the lasers one could adiabatically tune
the tunneling between two neighbor tubes. Such Josephson-
like tunneling is likely to lead to a 3D long-range order
of the superconducting phase: a quasi-1D model consisting
of attractive Hubbard chains with interchain tunneling t?
(Bogoliubov and Korepin, 1989), where t? is much less than
the energy gap �. For a singlet pair state, the charge density
wave is suppressed; thus the system shows an anomalous
average value, i.e., h�i"�1#i � 0. This means that a super-

conductive current exists. Through analysis of the instability of
the normal state (refer to the TLL phase) to the superconductor
transition, the critical temperature is estimated to be Tc �
�½qðt?=�Þ2�1=ð2�
0Þ, where the 
0 is the critical pair correla-
tion exponent of the 1D homogeneous attractive Hubbard
chain (Bogoliubov and Korepin, 1989). For T 
 Tc, the gap-
less excitation spectrum of the Cooper pair leads to power-law
behavior of the pair correlation function.

B. 1D two-component repulsive fermions

In Sec. III.F we saw that for 1D repulsive spin-1=2 fermi-
ons, the low-energy physics of the model can be reformulated
as two massless bosonic theories for the charge and spin
degrees of freedom with dispersions !ðqÞ ¼ vc;sjqj. Based
on this spin-charge separation, the bosonization approach has
been used to compute correlation functions of the 1D
Hubbard model (Schulz, 1990, 1991; Ren and Anderson,
1993; Tsvelik, 1995; Giamarchi, 2004). Because of the fact
that the spin and charge excitations are independent of each
other, the description of critical phenomena in the repulsive
Hubbard model has been made by the conformal field theory
approach (Woynarovich, 1989; Kawakami and Yang, 1991;
Essler et al., 2005). Using the critical theory based on the
product of two Virasoro algebras with central charge C ¼ 1,
one can systematically compute asymptotics of correlation
functions from the finite-size spectrum of low-lying excita-
tions in terms of the BA solution (Frahm and Korepin, 1990,
1991). In the same fashion, the long distance asymptotics
of various correlation functions of the spin-1=2 Fermi
gas have been investigated in the strong repulsive regime
(Lee et al., 2012). The model is gapless and thus critical at
zero temperature. At T ¼ 0 the correlation functions decay as
some power of distance governed by the critical exponents.
For T > 0 the decay is exponential.

In the context of spin-charge separation, the general two-
point correlation function for primary fields ’with conformal
dimensions ��

c;s at T ¼ 0 and T > 0 are given by

h’ðx;tÞ’ð0;0Þi¼ e�2iDcðkF"þkF#Þxe�2iDskF#xQ
a¼c;s

ðx� ivatÞ2�þ
a ðxþ ivatÞ2��

a
(119)

and

h’ðx; tÞ’ð0; 0ÞiT ¼ ð�T=vaÞ2ð�þ
a þ��

a Þe�2iDcðkF"þkF#Þxe�2iDskF#xQ
a¼c;s

sinh2�
þ
a ½ð�T=vaÞðx� ivatÞ�sinh2��

a ½ð�T=vaÞðxþ ivatÞ�
; (120)

Xi-Wen Guan, Murray T. Batchelor, and Chaohong Lee: Fermi gases in one dimension: From Bethe . . . 1671

Rev. Mod. Phys., Vol. 85, No. 4, October–December 2013



where kF#;" are the Fermi momenta, 0< x � L and�1<
t <1 is Euclidean time. The conformal dimensions of the
fields can be written in terms of the elements of the dressed
charge matrix as

2��
c ¼

�
ZccDcþZscDs�Zss�Nc�Zcs�Ns

2detZ

�
2þ2N�

c ;

2��
s ¼

�
ZcsDcþZssDs�Zcc�Ns�Zsc�Nc

2detZ

�
2þ2N�

s :

Here the dressed charge matrix is denoted by

Z ¼ ZccðQcÞ ZcsðQsÞ
ZscðQcÞ ZssðQcÞ

 !
;

which can be obtained from the dressed charge equations
(Lee et al., 2012).Qc;s are the Fermi boundaries for charge
and spin degrees of freedom. The non-negative integers
�N�, N

�
� and the parameter D� where � ¼ c, s character-

ize the three types of low-lying excitations. �N� denotes
the change in the number of down-spin fermions. N�

�

characterizes particle-hole excitations where Nþ
� (N�

� ) is
the number of particles at the right (left) Fermi level jumps
to. D� represents fermions that are backscattered from one
Fermi point to the other, i.e.,

Dc � �Ns þ�Ns

2
ðmod 1Þ; Ds � �Nc

2
ðmod 1Þ:

With Eqs. (119) and (120) the general two-point
correlation functions for the operator Oðx; tÞ, namely,
hOðx; tÞOyð0; 0Þi, can be written as a linear combination
of primary fields with conformal dimensions ��

c;s and their
descendent fields from the finite-size spectra of the model.

Various correlation functions of operators can be written
in terms of the field operators c �ðx; tÞ and c �ðx; tÞ where
� ¼"; # . For example,

(i) One-particle Green’s function:

G�ðx; tÞ ¼ hc �ðx; tÞc y
�ð0; 0Þi:

(ii) Charge density correlation function:

Gnnðx; tÞ ¼ hnðx; tÞnð0; 0Þi;
where nðx; tÞ ¼ n"ðx; tÞ þ n#ðx; tÞ and n�ðx; tÞ ¼
c y

�ðx; tÞc �ðx; tÞ.
(iii) Longitudinal spin-spin correlation function:

Gzðx; tÞ ¼ hSzðx; tÞSzð0; 0Þi;
where Szðx; tÞ ¼ 1

2 ½n"ðx; tÞ � n#ðx; tÞ�.
(iv) Transverse spin-spin correlation function:

G?ðx; tÞ ¼ hSþðx; tÞS�ð0; 0Þi; (121)

where Sþðx; tÞ ¼ c y
" ðx; tÞc #ðx; tÞ, and S�ðx; tÞ ¼

c y
# ðx; tÞc "ðx; tÞ.

(v) Pair correlation function:

Gpðx; tÞ ¼ hc #ðx; tÞc "ðx; tÞc y
" ð0; 0Þc y

# ð0; 0Þi:
(122)

The critical exponents for each of the above correlation
functions are determined by the values of the quantum state
with

G"ðx; tÞ: ð�Nc ¼ 1;�Ns ¼ 0; Dc 2 Zþ 1
2; Ds 2 Zþ 1

2Þ;
G#ðx; tÞ: ð�Nc ¼ 1;�Ns ¼ 1; Dc 2 Z;Ds 2 Zþ 1

2Þ;
Gnnðx; tÞ: ð�Nc ¼ 0;�Ns ¼ 0; Dc 2 Z;Ds 2 ZÞ;
Gzðx; tÞ: ð�Nc ¼ 0;�Ns ¼ 0; Dc 2 Z;Ds 2 ZÞ;
G?ðx; tÞ: ð�Nc ¼ 0;�Ns ¼ 1; Dc 2 Zþ 1

2; Ds 2 ZÞ;
Gpðx; tÞ: ð�Nc ¼ 2;�Ns ¼ 1; Dc 2 Zþ 1

2; Ds 2 ZÞ

with N�
c;s 2 Z
0 for every case. The explicit results for these

correlation functions for H � 1 and H ! Hc are given by
solving the dressed charge equations (Lee et al., 2012). In the
zero field limit H � 1 the dressed charge equations were
solved by the Wiener-Hopf method, explicitly,

ZssðQsÞ � 1ffiffiffi
2

p
�
1þ 4n#H

cHc

þ 1

4 lnðH0=HÞ
�
;

ZscðQcÞ � 1

2
þ 2n# ln2

c
� 2H

�2Hc

; ZcsðQsÞ � 2
ffiffiffi
2

p
H


Hc

;

ZccðQcÞ � 1þ 2 ln2



� 4H2

�2
H2
c

:

Here H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3=ð2eÞp

Hc with the critical field value Hc �
8n3�2=ð3cÞ for strong repulsion.

For the approach to the critical field h ! Hc the dressed
charge equations can be solved by asymptotic expansion
(Essler et al., 2005; Lee et al., 2012) with result

ZssðQsÞ�1� 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
þ 8

�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
;

ZscðQcÞ� 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
; ZcsðQsÞ� 4




0
@1� 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s 1
A;

ZccðQcÞ�1þ 8

�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
:

A few terms of the asymptotic expansion for the dressed
charges together with the above values for the low-lying
excitations determine the asymptotics of the correlation
functions. As an illustration of this approach, in the zero
field limit, the asymptotics of the density-density correlation
function are given by

Gnnðx; tÞ � n2 þ A1 cosð2kF#xÞ
jxþ ivctj�c1 jxþ ivstj�s1

þ A2 cosð2kF"xÞ
jxþ ivctj�c2 jxþ ivstj�s2

þ A3 cos½2ðkF# þ kF"Þx�
jxþ ivctj�c3

; (123)

where the critical exponents are
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�c1 ¼ 1

2
þ 2 ln2



� 4

�2

�
H

Hc

�
� 8 ln2

�2


�
H

Hc

�
;

�c2 ¼ 1

2
þ 2 ln2



þ 4

�2

�
H

Hc

�
þ 8 ln2

�2


�
H

Hc

�
;

�c3 ¼ 2þ 8 ln2



; �s1 ¼ 1þ 1

2 lnðH0=HÞ þ
4




�
H

Hc

�
;

�s2 ¼ 1þ 1

2 lnðH0=HÞ �
4




�
H

Hc

�
:

The presence of the external field does not change the form
of the correlator (123). In the large field limit, i.e., H ! Hc,
the exponents are given by (Lee et al., 2012)

�c1 ¼ 2� 8

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
þ 32

�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
;

�c2 ¼ 2þ 32

�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
;

�s1 ¼ 2� 4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
þ 32

�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
;

�s2 ¼ 2� 16



� 4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
þ 64

�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

Hc

s
:

(124)

The constants Ai with i ¼ 1, 2, and 3 depend on the interac-
tion. For kF;" ¼ kF;# ¼ �n=2 � kF, we see that the density-

density correlation contains 2kF and 4kF oscillations.
However, in the strong coupling limit, the system behaves
like noninteracting spinless free fermions; thus the 2kF terms
should vanish, i.e., A1 ¼ A2 � 0. The leading contributions to
the asymptotics of the density-density correlation function
are from the 4kF-oscillation term because this oscillation is a
consequence of interactions (Frahm and Korepin, 1990;
Essler et al., 2005).

Furthermore, the large distance behavior of the two-point
correlation function determines the singularities of spectral
functions near ! � �vc;sðk� kFÞ. The correlation functions

in momentum space can be determined by Fourier transform-
ing the asymptotics of the above correlators. Of particular
interest are the dynamical response functions such as the
spectral function Að!; kÞ which can be obtained from the
imaginary part of the retarded single-particleGreen’s function.
The interacting spectral function often has a nonzero width.
There are singularities in the spectral function Að!; kF þ qÞ
for ! ! vc;sq (Essler et al., 2005; Essler, 2010), with

Að!;kFþqÞ�

8>>>>>><
>>>>>>:

ð!�vcqÞð�1�1Þ=2 for!!vcq;

ð!þvcqÞ�1=2 for!!�vcq;

ð!�vsqÞ�1�1=2 for!!vsq;

ð!þvsqÞ�1 for!!�vsq:

(125)

Here the exponent �1, which can be obtained from Fourier
transformation, is always greater than zero. Using TLL theory,
the Fourier transforms of the zero-temperature single-particle
Green’s function have been computed (Meden and
Schönhammer, 1992; Voit, 1993). The Fourier transform of
the 2kF Luttinger liquid density correlation function was
calculated recently by Iucci, Fiete, and Giamarchi (2007).

In general, the explicit calculation of the spectral function is
much more involved (Frahm and Korepin, 1990; Essler et al.,
2005; Frahm and Palacios, 2005).

C. 1D multicomponent fermions

In general, SUð�Þ Wess-Zumino-Witten (WZW) theory
can be used to capture the low-energy behavior of a family
of critical quantum spin chains (Affleck and Haldane, 1987).
The SUð�Þ WZW models of level ‘ describe integrable
higher-spin models with critical points characterized by the
central charge C ¼ ‘ð�2 � 1Þ=ð‘þ �Þ and the scaling di-
mensions of the primary fields (Affleck and Haldane,
1987). The Uð1Þ � SUð�Þ symmetry interacting fermions in
1D have � branches of states characterized by 1 charge
degree of freedom and �� 1 spin rapidities; see Eq. (93).
The low-lying excitations are described by the linear disper-
sion relations!rðkÞ ¼ vrðk� krFÞwith the charge velocity vc

and spin velocities vr for r ¼ 1; . . . ; �� 1. The BA result
(Guan et al., 2010) predicts that the energy has a universal
finite-size scaling in the low-energy excitation spectrum, i.e.,

E0;L � E0;1 ¼ ��C

6L

X
r

vr þOð1=L2Þ:

The low-energy spectrum can be interpreted in terms of a
product of � independent Virasoro algebras with the same
central charge C ¼ 1. For vanishing magnetic field, the spin
velocities are equal. Thus we have a spin-charge separation
of the C ¼ 1 Gaussian field theory [in the charge sector with
U(1) symmetry] and C ¼ �� 1 WZW theory [in the spin
sector with SUð�Þ symmetry].

Using the BA solution, Frahm and Schadschneider (1993)
and Gorshkov et al. (2010) calculated finite-size corrections
and the spectrum of the low-lying excitations in the 1D
multicomponent degenerate Hubbard model. The asymptotic
behavior of various correlation functions has been determined
from these low-lying spectrum. In the same fashion, the
asymptotics of correlation functions for the Bose-Fermi mix-
tures have been studied (Frahm and Palacios, 2005). The
general structure of the critical exponents for the multiple
nested BA solvable models has been well understood; see a
review by Schlottmann (1997).

The low-lying excitations above the ground state energy of
the critical Fermi gases with SUð�Þ symmetry have been
obtained (Frahm and Schadschneider, 1993; Kawakami,
1993; Schlottmann, 1997; Schlottmann and Zvyagin, 2012a,
2012b)

�E ¼ 2�

L

�
1

4
tð�NÞtðZ�1ÞVZ�1�N þ tð�DÞZVZt�D

þ X��1

r¼0

vrðNþ
r þ N�

r Þ
�
;

�P ¼ 2�

L

�
t�N�Dþ X��1

r¼0

Nr�Dr þ
X��1

r¼0

ðNþ
r � N�

r Þ
�
;

(126)

where V ¼ diagðvc; v1; . . . ; v��1Þ and N�
r are positive inte-

gers characterizing the excited states at the branches r ¼
0; 1; . . . ; �� 1. Here r ¼ 0 stands for the charge degree of
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freedom. �N and �D are vectors, where �Nr in vector �N
denotes the changes of the total numbers in each branch. The
values of �Dr in vector �D are integer or half-odd integer
depending on �Nr, i.e.,

�Dc :¼ �Nc þ �N1

2
ðmod 1Þ;

�Dr :¼ �Nr�1 þ �Nrþ1

2
ðmod 1Þ

(127)

with r ¼ 1; . . . ; �� 1 and �N0 ¼ �Nc;�N� ¼ 0.
The conformal dimensions ��

r of the primary field are
given in terms of the dressed charge matrix D (Frahm and
Schadschneider, 1993):

2��
r ¼ ½ðZt�DÞr � 1

2ðZ�1�NÞr�2 þ 2N�
r : (128)

The dressed charges Zij � ZijðQjÞ can be obtained by solv-

ing the dressed charge equations obtained from the dressed
energy equations by definition (Izergin, Korepin, and Yu
Reshetikhin, 1989; Bogoliubov and Korepin, 1990; Frahm
and Schadschneider, 1993). Consequently, different dressed
charge equations are accordingly derived for the multicom-
ponent Fermi gases in the repulsive and attractive regimes.
The dressed charge for the degenerate SUð�Þ Hubbard model
was calculated explicitly in the absence of magnetic field
(Frahm and Schadschneider, 1993). The single-particle
Green’s function and charge density-density correlation
were thus studied. In general, using the CFT result, the
asymptotics of correlators for primary fields at T ¼ 0 are
given by

h’ðx; tÞ’ð0; 0Þi ¼ exp½�2iðP��1
r¼0 �Drk

r
FÞx�Q

��1
r¼0 ðx� ivrtÞ2�þ

r ðxþ ivrtÞ2��
r
:

(129)

Here krF ¼ �nr is the Fermi momentum of each branch. The
critical exponents of the correlation functions of 1D multi-
component Fermi gases at zero temperature in external mag-
netic fields can be calculated in a straightforward way. Some
response functions in multicomponent Luttinger liquids were
computed analytically (Orignac and Citro, 2012). The quan-
tum numbers of low-lying excitations, such as�Nr,�Dr, and
N�

r , completely determine the nature of the asymptotic be-
havior of the correlation functions. There are many superfluid
orders in multicomponent attractive Fermi gases, for which
the operators for the superfluidity ’ðxÞ are written in terms of
fermion annihilation operators of length r. The instability of
superfluidity and normal phase can be determined by the
correlation function (129). In the context of ultracold gases
with higher-spin symmetries, Schlottmann and Zvyagin
(2012a, 2012b) studied various superfluidity ordering in
spin-3=2 and spin-5=2 attractive Fermi gases, in which the
relevant superfluidity operators of few-body bound states
were labeled. However, the study of color superfluidity, the
FFLO-like modulated ordering in 1D interacting fermions
with large spins, still remains preliminary. It remains to
further investigate magnetism, superfluidity, charge, and
spin density waves by using CFT and the BA solutions.

D. Universal contact in 1D

The universal nature and phenomena of interacting fermi-
ons, such as Landau’s Fermi liquid theory, Luttinger liquid
theory, and quantum criticality, have always attracted great
attention from theory and experiment. Tan (2008a, 2008b,
2008c) showed that a few universal relations for two-
component interacting fermions involve an extensive quantity
called the universal contact C. The first Tan relation is for the
tails of the momentum distribution which exhibits a universal
n�ðkÞ � C=k4 decay as the momentum tends to infinity. Here
we denote � ¼"; # . The constant C measures the probability
of two fermions with opposite spin at the same position.
Second, this contact also reflects the rate of change of the
energy or free energy due to a small change in the inverse
scattering length 1=a for fixed entropy s or temperature T:

�
dE

da�1

�
s
¼� ℏ2

4�m
C;

�
dF

da�1

�
T
¼� ℏ2

4�m
C: (130)

Tan’s additional relation states that the pressure and the
energy density are related by

P ¼ 2

3
E þ ℏ2

12�ma
C:

The Tan relations were found as a consequence of operator
identities following from a Wilson operator product expan-
sion of the one-particle density matrix (Braaten and Platter,
2008). These relations hold more generally as long as the
interaction range r0 is much smaller than any other character-
istic length scale like the average interparticle distance and
the thermal wavelength (Zhang and Leggett, 2009). Prior to
Tan’s results, the derivative of the energy Ewith respect to the
inverse scattering length a has been experimentally examined
from measurements of the photoassociation rate of a trapped
gas of 6Li atoms (Partridge et al., 2005). The static and
dynamic structure factor for the trapped gas of 6Li atoms
has been studied by using Bragg spectroscopy (Kuhnle et al.,
2010). In particular, Tan’s universal contact and thermody-
namic relations have been confirmed for a trapped gas of 40K
atoms (Stewart et al., 2010). Recent developments on the
Tan relations for fermions with large scattering length were
reviewed by Braaten (2012).

The generalization of Tan relations to 1D interacting fer-
mions was studied by Barth and Zwerger (2011) using the
operator product expansion method developed by Kadanoff
(1969) and Wilson (1969). The Tan adiabatic theorem has
been generalized to the 1D Gaudin-Yang model for which the
1D analog of the Tan adiabatic theorem is given in the form
ðd=da1DÞE ¼ C=4m. Tan’s universal contact also exists in the
asymptotic behavior of the tail momentum distribution

of the 1D Fermi gas. In terms of the fields c y
�ðRÞ and

c �ðRÞ the momentum distribution is given by ~n�ðkÞ ¼R
dR

R
dxe�ikxhc y

�ðRÞc �ðRþ xÞi. Using the operator prod-

uct expansion method, Barth and Zwerger (2011) found that
the momentum distribution of the 1D two-component Fermi
gas behaves as ~n�!C=k4 as k ! 1. Furthermore, using a
scaling analysis, they also derived the pressure relation which
connects pressure and energy density E via the universal
contact p ¼ 2E þ a1DCða1Þ=4m for the 1D Fermi gas.
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Tan’s universal contact also arises in the additional relation
for the pair distribution function and the related static
structure factor. From the short-distance expansion of the
two-particle density matrix Barth and Zwerger (2011) found
the total pair distribution function at short distance

gð2ÞðxÞ ¼ 2n"n#
n2

gð2Þ"# ð0Þ
�
1� 2jxj

a1D
þOðx2Þ

�
: (131)

This short-distance singularity gives rise to a 1=q2 power-
law tail in the associated static structure factor SðqÞ ¼
1þ n

R
dxe�iqxðgð2ÞðxÞ � 1Þ, i.e.,

Sðq ! 1Þ ¼ 1� 4n"n#
g
ð2Þ
"# ð0Þ=q2 (132)

with the dimensionless interaction constant 
 ¼ �2=na1D. In
fact, for the 1D two-component Fermi gas, the universal
contact is obtained by calculating the change of the interac-
tion energy with respect to the interaction strength by the
Hellman-Feynman theorem, i.e.,

C ¼ 4

a21D
n"n#g

ð2Þ
";# ð0Þ:

The local pair correlation gð2Þ";# is accessible via the exact BA

solution through the relation

gð2Þ";# ð0Þ ¼
1

2n"n#
@E

@c
:

Here c ¼ �2=a1D and E is the ground state energy per unit
length.

In a similar way, for the 1D �-component Fermi gas, there
exists a 1D analog of the Tan adiabatic theorem where the
universal contact is given by the local pair correlations for
two fermions with different spin states. The two-body local
pair correlation function is given by the expectation value of
the four-operator term in the second quantized Hamiltonian,
explicitly,

gð2Þ
�;�0 ð0Þ ¼ �

ð�� 1Þn2
@E

@c

with � > 1 (Guan, Ma, and Wilson, 2012). E is again the
ground state energy per unit length. From the asymptotic
expansion result for the ground state energy of the balanced

Fermi gas obtained in Sec. V.C.2, we easily find gð2Þ
�;�0 ð0Þ ! 1

as jcj ! 0. The local pair correlation can be obtained from
the ground state energy (95) of the balanced gas with strong
repulsion,

gð2Þ
�;�0 ð0Þ ¼ 4��

3ð�� 1Þ
2

�
Z1 � 6Z2

1



þ 24


2

�
Z3
1 �

Z3�
2

15

��
:

(133)

This local pair correlation reduces to that for the
spinless Bose gas (Guan and Batchelor, 2011) as � ! 1.
For strong attractive interaction, the local pair correlation
for two fermions with different spin states is given by
(Guan, Ma, and Wilson, 2012)

gð2Þð0Þ¼�ð�þ1Þj
j
6

þ 4�2

3�5ð��1Þ
2

�
A�þ 6A2

�

�2j
j
þ 24

�4
2

�
A3
��B�

15

��
þOð1=
4Þ: (134)

Here A� ¼ P
��1
r¼1 1=r and B� ¼ P

��1
r¼1 1=r

3. It is noted that

for the whole interaction regime, the local pair correlations
for the balanced �-component Fermi gas tend to the limiting
value for the spinless bosons as � ! 1. Figure 27 shows the
local pair correlation for two fermions with different spin
states in the multicomponent Fermi gas.

VII. EXPERIMENTAL PROGRESS

In order to realize 1D systems in experiments, one has to
apply strong confinement in two transverse directions and
allow free motion along the longitudinal direction. 1D sys-
tems have been simulated in various settings from solid
electronic materials to ultracold atomic gases. Although
some 1D features have been observed in solid electronic
materials, it is still challenging to control material parameters
and separate imperfect effects caused by defects and
Coulomb interactions, etc. In contrast, ultracold atomic gases
trapped in external potentials have high controllability and
clean environment. In this section, we briefly review the
experimental developments in confining quantum systems
of ultracold atoms in 1D.

A. Realization of 1D quantum atomic gases

Neutral atoms can be trapped by coupling their permanent
or induced dipole moments to electromagnetic field gradients.
By using a laser field (or an inhomogenous magnetic field), it
is possible to trap neutral atoms via the interaction between
the induced electric dipole moment and the laser electric field
(or via the interaction between the permanent magnetic di-
pole moment and the magnetic field). Correspondingly, there
are two typical techniques for realizing 1D quantum atomic
gases: optical lattices and atom chips.

1. Optical lattices

Optical lattices are created by superimposing one or more
pairs of counterpropagating laser beams (Bloch, 2005); see

2 0 2 4
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FIG. 27 (color online). The local pair correlation gð2Þ
�;�0 ð0Þ vs 
 ¼

�2=na1D for the balanced multicomponent Fermi gas for � ¼ 2, 4,

10 and for the spinless Bose gas. The solid lines are the numerical

solutions obtained from the two sets of Fredholm equations. The

dashed lines are the asymptotic limits obtained from the first term in

Eq. (134). From Guan, 2012.
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Fig. 28. The laser-atom interaction results in an ac-Stark shift

dependent on the laser intensity and the detuning from reso-
nance 	 ¼ !L �!a, in which !L is the laser frequency and

!a is the atomic transition frequency. Therefore, due to the
reason that optical lattices have periodic laser intensities,

their ac-Stark shifts provide periodic potentials for confining
atoms. For a negative detuning (red detuning), atoms are

attracted to the region of large laser intensities. On the

contrary, for a positive detuning (blue detuning), atoms are
attracted to the region of small laser intensity.

Similar to the electrons in a conductor, even if the lattice
well depth exceeds the kinetic energy of the atoms, the atoms

confined in optical lattices can move among neighboring

lattice sites via quantum tunneling. In the case of Bose atoms,
the quantum phase transition between superfluid and

Mott-insulator phases has been experimentally observed
(Greiner et al., 2002). The ground state appears as a super-

fluid when the system is dominated by the quantum tunneling
among neighboring sites, whereas the ground state appears

as a Mott insulator if the system is dominated by the on-
site interaction between atoms. For fermionic atoms, the

metal-insulator transition and Néel antiferromagnetic states,
etc. have been demonstrated in recent experiments (Jördens

et al., 2008; Schneider et al., 2008).
Ultracold atomic systems confined in optical lattices have

highly controllable parameters such as the intersite hopping

strength, on-site interaction strength, and dimensionality. The
intersite hopping strength can be adjusted by tuning the laser

intensity of the optical lattices. The on-site interaction
strength can be tuned from positive infinity to negative

infinity by using Feshbach resonances. In particular, the

dimensionality can be tuned from 3D to 1D by controlling
the spatial configuration of the optical lattices; see Fig. 28.

The 1D lattice can be created by a pair of counterpropagat-
ing laser beams to form a standing wave,

V1DLðxÞ ¼ V0sin
2ðkLxÞ: (135)

The 2D square lattice can be formed by two orthogonal
standing waves,

V2DLðx; yÞ ¼ V0½sin2ðkLxÞ þ sin2ðkLyÞ�: (136)

The 3D simple cubic lattice can be produced by three
orthogonal standing waves,

V3DLðx; y; zÞ ¼ V0½sin2ðkLxÞ þ sin2ðkLyÞ þ sin2ðkLzÞ�:
(137)

By imposing laser beams under different spatial configura-
tions, it is also possible to make more complex lattices such
as the triangle, honeycomb, and kagome lattices.

It has been demonstrated that an array of 1D systems
can be created by superposing a harmonic potential onto a
2D optical lattice. The potential for such a system is of
the form

Vðx; y; zÞ ¼ V2DLðx; yÞ þ Vharðx; y; zÞ: (138)

Under the tight-binding condition, each lattice well can be
regarded as an independently harmonic potential. That is,
the potential Vijðx; y; zÞ around the lattice site ðxi; yjÞ can be

expressed as

Vijðx; y; zÞ ¼ 1
2m!2

xy½ðx� xiÞ2 þ ðy� yjÞ2� þ 1
2m!2

zz
2:

(139)

If the lattice depth is sufficiently large, we have !xy � !z

and so all atoms will always stay in the lowest transverse
vibrational state along the x and y directions. The absence
of transverse excitations means that each lattice tube
along the z axis can be viewed as a quasi-1D system.
Experimentally, the longitudinal frequency !z is around
2�	 10� 200 Hz and the transverse frequency!xy is around

2�	 10� 40 kHz (Bloch, 2005).

2. Atom chips

Atom chips are a kind of nanofabricated atom-optical
circuit used to trap and manipulate neutral atoms. The basic
idea of atom chips is to build atomic traps through a bias
magnetic field and a system of electric wires fabricated on
chip surfaces. Thus the magnetic potential of a straight wire
has a hole along the wire. To close the magnetic potential
with end caps, there are two simple schemes: one scheme is
achieved by combining a straight wire with an inhomoge-
neous bias field, and the other scheme is achieved by combin-
ing a bent wire with a homogeneous bias field; see Fig. 29.
The basic property, practical design, and experimental
procedure of atom chips have been reviewed in the liter-
ature (Folman et al., 2002; Reichel, 2002; Fortágh and
Zimmermann, 2007). Here we briefly review how to use
atom chips to realize 1D traps with neutral atoms.

One can obtain a highly elongated trap if the longitudinal
confinement is very weak compared to the transverse confine-
ments. As illustrated in Fig. 29, the wire with current Iz and
the homogenous bias field Bbias form a waveguide along the
longitudinal direction. This waveguide is closed by two

FIG. 28 (color online). Optical lattices of different spatial con-

figurations. (a) For a 2D optical lattice formed by superimposing

two orthogonal standing waves, the atoms are confined to an array

of 1D potential tubes. (b) For a 3D optical lattice formed by

superimposing three orthogonal standing waves, the atoms are

approximately confined by a 3D simple cubic array of harmonic

oscillator potentials at each lattice site. From Bloch, 2005.
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perpendicular wires with currents I1 and I3. Near the trap
center, the magnetic field is given by

B ¼ B0 þ 1

2
ðz� z0Þ2 þ 1

2

�
�2

B0

� 

2

�
�2 (140)

with B0 denoting the value of the magnetic field in the trap
center. The corresponding magnetic potential is given as

Vð�; zÞ ¼ �mB0 þ 1
2m!2

zðz� z0Þ2 þ 1
2m!2

?�
2 (141)

with the trapping frequencies

!z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�m

m


r
; (142)

!? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m

m

�
�2

B0

� 

2

�s
; (143)

where �m is the atomic magnetic moment and m is the
single atomic mass. At finite temperature, a real system enters
its 1D regime when both the residual thermal energy (of order
kBT) and the chemical potential � are far less than the
transverse excitation energy ℏ!?, i.e., fkBT;�g � ℏ!?.
Experimentally, the atom chips with a Z-shaped wire can
successfully generate quasi-1D potential traps of high fre-
quency ratio !?=!k up to a few hundred (Reichel and

Thywissen, 2004; Trebbia et al., 2006; Hofferberth et al.,
2007; Jo, Choi, Christensen, Lee et al., 2007; van Amerongen
et al., 2008; Bouchoule, van Druten, and Westbrook, 2011).
Typically, the transverse frequency !?=ð2�Þ is an order of
kHz and the longitudinal frequency !k=ð2�Þ is about 10 Hz.

It has also been demonstrated that a 1D-box trap, which has
nearly constant potential at the trap minimum combined with
tight harmonic confinement in the transverse directions, can
be formed by positioning two wiggles in a long straight wire
(van Es et al., 2010).

B. Tuning interaction via Feshbach resonance

The 1D quantum gases of delta-function contact interac-
tion U1DðzÞ ¼ g1D	ðzÞ are characterized by the dimension-
less parameter 
 (Olshanii, 1998; Petrov, Shlyapnikov, and

Walraven, 2000; Dunjko, Lorent, and Olshanii, 2001;
Bergeman, Moore, and Olshanii, 2003), which is defined as
the ratio between the interaction energy �int and the kinetic
energy �kin, 
 ¼ �int=�kin ¼ mg1D=ðℏ2n1DÞ. Here g1D de-
notes the coupling constant and n1D is the 1D number density.
The coupling constant g1D is determined by the 3D scattering
length a and the transverse width of the wave function
(Olshanii, 1998; Bergeman, Moore, and Olshanii, 2003),

g1D ¼ � 2ℏ2

ma1D
¼ 2ℏ2a

ml2?

1

1� Aa=l?
; (144)

where the constant A ¼ 1:0326 and the transverse width l? ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=m!?

p
. If jaj � l?, the atom-atom scattering acquires a

3D character, and the interaction strength g1D is given as
g1D ¼ 2ℏ2a=ðml2?Þ. Theoretically speaking, by varying

the interaction strength g1D, the gradual transitions from
quasi-BEC and the Tonks-Girardeau gas appear in 1D Bose
systems, and the BCS-BEC-like crossover takes place in 1D
two-component Fermi systems. Experimentally, to explore
different regimes of 1D quantum atomic gases, one may tune
the 3D scattering length a via the well-developed techniques
of Feshbach resonance.

Feshbach resonance takes place when the energy of a
bound state (a state belonging to a closed channel) for
the interparticle potential is close to the kinetic energy of
the two colliding particles. The scattering length of the two
colliding ultracold atoms undergoes a Feshbach resonance if
the energy of a molecular state is close to the kinetic energy
of the colliding pair of atoms. The interaction strength be-
tween a pair of ultracold atoms is proportional to the scatter-
ing length. A positive (negative) scattering length gives
repulsive (attractive) interaction. The scattering length a
near a magnetic Feshbach resonance point B0 is given by

aðBÞ ¼ abg

�
1� �

B� B0

�
(145)

with the background scattering length abg, the magnetic field

B, and the resonance width �. Obviously, the sign and
strength of the scattering length can be tuned by adjusting
the magnetic field B. Feshbach resonances provide an excel-
lent tool for controlling the ultracold interaction between
atoms and have been widely used for exploring dif-
ferent regimes of quantum atomic gases. The theory of
Feshbach resonances in ultracold atomic gases was intro-
duced by Duine and Stoof (2004). The experimental develop-
ments in this field can be found in a recent review paper
(Chin et al., 2010).

C. Data extraction

There are two usual probes for exploring the physics of
quantum atomic gases. One probe is the correlation function,
which measures correlations between the atomic fields at
different positions and times. The correlation function has
been extensively used for exploring many-body coherence
and distinguishing order and disorder. The other probe is the
dynamical structure factor, which describes the total proba-
bility to populate any excited state by transferring both
momentum and energy from an initially equilibrium state.

FIG. 29 (color online). 1D magnetic potential generated by an

atom chip. The transverse confinements are formed by the bias

magnetic field Bbias and the chip wire Iz. The longitudinal confine-

ment is generated by the other two chip wires I1 and I3. From van

Amerongen, 2008.
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The dynamical structure factor is a powerful quantity for
characterizing the low-energy excitations.

1. Detecting correlation functions via optical imaging

The first-order correlation function (also called the single-
particle correlation function) is

Gð1Þ
i;j ðr1; r2Þ ¼ h�þ

i ðr1Þ�jðr2Þi: (146)

Here �iðrÞ and �jðrÞ denote the field operators for atoms in

states jii and jji. Obviously, the first-order correlation func-
tion becomes the density niðrÞ ¼ h�iðrÞi ¼ h�þ

i ðrÞ�iðrÞi if
i ¼ j and r ¼ r1 ¼ r2. The density profile can be mapped out
by the well-developed techniques of optical imaging, in
which information about an atomic gas is encoded onto the
absorption, phase shift, or polarization information of the
probe laser. One popular optical imaging technique is absorp-
tion imaging, which is implemented by comparing images
taken with and without the atomic gas within the field of view
and recording the fractional absorption of the probe laser.
However, absorption imaging shows large uncertainty in the
measured column density in probing high density atomic
gases. Therefore, absorption imaging is usually taken after
the atomic gas is released from the trap and expanded for a
certain time. This imaging method is known as time-of-flight
imaging (Ketterle, Durfee, and Stamper-Kurn, 1999; Altman,
Demler, and Lukin, 2004).

In time-of-flight imaging, the fractional absorption is pro-
portional to the expectation value of the atomic density opera-
tor niðr; tÞ ¼ h�iðr; tÞi ¼ h�þ

i ðr; tÞ�iðr; tÞi. By assuming

negligible atomic collision effects in the ballistic expansion
during the time of flight, the density niðr; tÞ is proportional to
the initial momentum distribution niðkÞ with the correspond-
ing wave vector k ¼ mr=t, i.e., the time-of-flight imaging
gives the initial momentum distribution

niðkÞ ¼ h�þ
i ðkÞ�iðkÞi / niðr; tÞ: (147)

However, if the time of flight is not long enough and the atomic
collision effects cannot be ignored during the time of flight, the
measured density distribution niðr; tÞ will not be proportional
to the initial momentum distribution niðkÞ with k ¼ mr=t
(Pedri et al., 2001; Gerbier et al., 2008). Recently, different
from free expansion via time of flight, a controlled expansion
via shortcuts to adiabaticity has been proposed (del Campo,
2011; del Campo and Boshier, 2012).

By analyzing the correlation of different time-of-flight
images, one can reconstruct the density-density correlation
function hniðr1Þnjðr2Þi ¼ h�þ

i ðr1Þ�þ
j ðr2Þ�jðr2Þ�iðr1Þi.

This technique is known as noise spectroscopy (Altman,
Demler, and Lukin, 2004; Chuu et al., 2005; Fölling et al.,
2005; Greiner et al., 2005). In different runs of experiments,
the time-of-flight images have technical noises and quantum
fluctuations at the same time. Each time-of-flight imaging is a
measurement of the density operator. To explore the quantum
correlation of the density operator, all technical noises should
be reduced below the quantum fluctuations. Therefore, the
measurement times M of imaging must be sufficiently large
so that the statistical error 1=

ffiffiffiffiffi
M

p
is small enough. The

density-density correlation function is a special case of the
second-order correlation function

Gð2Þ
i;j ðr1; r2; r3; r4Þ ¼ h�þ

i ðr1Þ�þ
j ðr2Þ�jðr3Þ�iðr4Þi;

(148)

which is also called the two-particle correlation function.
To reconstruct the full correlation functions, in addition to

the measurement of density (diagonal correlations), one has
to measure the nondiagonal correlations. It has been sug-
gested that the nondiagonal correlations h�þ

i ðk0Þ�iðkÞi can
be measured by atomic interferometry (Stenger et al., 1999;
Torii et al., 2000; Polkovnikov, Altman, and Demler, 2006).
The Fourier sampling of time-of-flight imagines may also be
used to reconstruct the full one-particle and two-particle
correlation functions (Duan, 2006). In this detection scheme,
two consecutive Raman pulses at the beginning of the free
expansion are used to induce a tunable momentum difference
to the correlation terms so that both diagonal and nondiagonal
correlations in the momentum space can be detected. The first
Raman operation is implemented by two traveling-wave
beams of different wave vectors k1 and k2. The correspond-
ing effective Raman Rabi frequency has a spatial dependent
phase with �ðrÞ ¼ �0e

ið	k�rþ’1Þ, where 	k ¼ k2 � k1 and
’1 is a constant phase. The second Raman operation is
implemented by two counterpropagating laser beams of
the resonant frequency for the transition between the two
involved hyperfine levels.

In contrast to the first Raman operation, the effectiveRaman
Rabi frequency for the second Raman operation is a spatial
independent constant �0e

i’2 . Therefore, through time-of-
flight imaging, the real and imaginary parts of the nondiagonal
correlation function h�þ

� ðkÞ��ðk� 	kÞi can bemeasured by
choosing the relative phase 	’ ¼ ’2 � ’1 ¼ 0 and �=2,
respectively. Combined with the techniques of noise spectros-
copy, through analyzing the correlations of imagines
corresponding to h�þ

� ðkÞ��ðk� 	kÞi and h�þ
� ðk0Þ��	

ðk0 � 	k0Þi, respectively, the two-particle correlation function
h�þ

� ðkÞ��ðk� 	kÞ�þ
� ðk0Þ��ðk0 � 	k0Þi can be recon-

structed. If the atomic gases have two spin components �1

and�2, the spin-spatial correlations h�þ
�1
ðk1Þ��2

ðk2Þi can be
reconstructed by a combination of Fourier samplingwith a pair
of Raman pulses which mixes the two spin components.
Therefore, in addition to the single-spin density-density cor-
relation functions h�þ

� ðkÞ��ðk�	kÞ�þ
� ðk0Þ��ðk0 �	k0Þi,

the opposite-spin density-density correlation functions
h�þ

�1
ðk1Þ��1

ðk1 � 	k1Þ�þ
�2
ðk2Þ��2

ðk2 � 	k2Þi can be

reconstructed.

2. Detecting the dynamical structure factor via Bragg scattering

Based upon the backward scattering of incident particles
(such as photons, electrons, and atoms) from a target sample,
Bragg scattering is a powerful tool for determining both the
momentum and the energy absorbed by the target sample. In
experiments with ultracold atomic gases, unlike photons
diffracted by an atom grating, atoms are diffracted on a
grating of coherent photons (lasers). Bragg scattering pro-
vides an effective tool of spectroscopy, called Bragg spec-
troscopy, which can be used to detect the dynamical structure
factor and explore the intrinsic mechanism of the low-energy
excitations.

The dynamical structure factor Sðq; !Þ describes the total
probability to populate an excited state by transferring a
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momentum ℏq and energy ℏ!. At nonzero temperatures, the
dynamical structure factor is (Pitaevskii and Stringari, 2003)

Sðq; !Þ ¼ 1

Z

X
i;f

e�Ei jh�fjcþðqþ kÞc ðkÞj�iij2

	 	ðEfðqþ kÞ � EiðkÞ � ℏ!Þ; (149)

where j�ii and j�fi are initial and final states of the many-

body system, with energies Ei and Ef. The operator cþðkÞ
creates a particle of momentum k. The function Z ¼ P

ie
�Ei

with ¼ 1=kBT is the partition function. At zero temperature,
the equilibrium system can occupy only its ground state and
the dynamical structure factor is expressed as

Sðq; !Þ ¼ 1

Z

X
f

jh�fjcþðqþ kÞc ðkÞjGSij2	ðEfðqþ kÞ

� EGSðkÞ � ℏ!Þ: (150)

In a two-photon Bragg transition, the momentum shift
q ¼ k2 � k1 is controlled by wave vectors of the two Bragg
lasers and the frequency ! ¼ !2 �!1 is determined by the
frequency difference.

The techniques of Bragg spectroscopy have been success-
fully applied to measure the dynamical structure factor of
Bose condensed atoms (Stenger et al., 1999; Ozeri et al.,
2005) and strongly interacting 3D Bose (Papp et al., 2008)
and Fermi (Veeravalli et al., 2008) atomic gases near
Feshbach resonance. The techniques of Bragg spectroscopy
have been employed to detect the elementary excitations
in an array of 1D Bose gases (Clément et al., 2009). By
varying the detuning of the Bragg lasers, it is possible to
probe both the spin and density dynamical structure factors
for multicomponent Fermi systems (Hoinka et al., 2012).

D. Experiments with 1D quantum atomic gases

Over the last decade, there have been many breakthrough
experiments with 1D quantum atomic gases. These experi-
ments are implemented by using an ensemble of ultracold
Bose or Fermi alkaline atoms occupying one or multiple
hyperfine levels. The key experiments in 1D quantum atomic
gases are listed in Table I.

1. Bose gases

The 1D Lieb-Liniger Bose gas is a prototypical many-body
system featuring rich many-body physics. This gas features
three different regimes in quasi-1D traps: a true condensate
regime, a quasicondensate regime, and the Tonks-Girardeau
regime (Petrov, Shlyapnikov, and Walraven, 2000). In the
limit of weak interaction, 
 ¼ mg1D=ℏ2n1D � 1, i.e., in
the quasicondensate regime, where Bose-Einstein condensa-
tion can take place and mean-field theory well describes the
low-energy physics. In this regime, due to the intrinsic non-
linearity from s-wave scattering between atoms, matter-wave
solitons have been observed in several experiments
(Khaykovich et al., 2002; Strecker et al., 2002; Becker
et al., 2008; Stellmer et al., 2008). In the limit of strongly
repulsive interaction, 
 ¼ mg1D=ℏ2n1D � 1, i.e., in the
Tonks-Girardeau regime, fermionization of Bose atoms oc-
curs. By loading ultracold Bose atoms into a 2D optical
lattice, the effective mass of quasiparticles can be increased

by applying an additional periodic potential along the longi-

tudinal direction (Paredes et al., 2004) and therefore an array

of Tonks-Girardeau gases of quasiparticles can be prepared

by increasing the effective mass. The dimensionless parame-

ter 
 can also be changed without modulating the longitudi-

nal trapping enabling the realization of a set of parallel 1D

Bose atomic gases in the Tonks-Girardeau regime (Kinoshita,

Wenger, and Weiss, 2004). In the quasicondensate regime of

intermediate values of 
, the experimental measurements

suggest that both mean-field theory and fermionization fail

to describe this crossover (Trebbia et al., 2006). The in situ

measurements of the linear density of a nearly 1D trapped

Bose gas on an atom chip indicate good agreement with the

theoretical prediction from the Yang-Yang thermodynamics

equations (van Amerongen et al., 2008).
Breathing modes and dipole modes are two usual collective

excitations in trapped quantum atomic gases. The breathing

modes can be excited by time periodically modulating the

longitudinal harmonic potential. The dipole modes can be

excited by suddenly displacing the longitudinal harmonic

TABLE I. Key experiments in 1D quantum atomic gases.

Group (leader) Research topics

Amsterdam (van Druten) Yang-Yang thermodynamics (2008)
Nonequilibrium spin dynamics (2010)

Cambridge (Köhl) Quantum transport (2009)
CNRS (Bouchoule) Density fluctuations (2006, 2011)

Phonon fluctuations (2012)
1D-3D crossover (2011)
Three-body correlations (2010)
Mean-field breakdown (2006)

ENS (Salomon) Matter-wave solitons (2002)
ETH (Esslinger, Köhl) Confinement induced molecules (2005)

p-wave Feshbach resonance (2005)
1D-3D crossover (2004)
Bragg spectroscopy (2004)
Collective oscillations (2003)

Hamburg (Sengstock) Matter-wave solitons (2008)
Innsbruck (Nägerl) super-Tonks-Girardeau gases (2009)

sine-Gordon phase transition (2010)
Confinement-induced resonance (2010)
Three-body correlations (2011)

Kaiserslautern (Ott) Spatiotemporal fermionization (2012)
LENS (Inguscio) Bragg spectroscopy (2009, 2011, 2012)

Low-energy excitations (2009)
Impurity dynamics (2012)

Mainz/MPQ (Bloch) Impurity dynamics (2013)
Relaxation dynamics (2012, 2013)
Squeezed Luttinger liquids (2008)
Tonks-Girardeau gases (2004)

MIT (Ketterle) Atomic interferometry (2007)
Fluctuations and squeezing (2007)

NIST (Phillips, Porto) Dipole oscillations (2005)
Three-body recombination (2004)

Pennsylvania (Weiss) Tonks-Girardeau gases (2004)
Local pair correlations (2005)
Quantum Newton’s cradle (2006)

Rice University (Hulet) Spin-imbalanced Fermi gases (2010)
Matter-wave solitons (2002)

Vienna (Schmiedmayer) Quantum correlations (2011, 2012)
Twin-atom beams (2011)
Atomic interferometry (2005, 2010)
Quantum and thermal noises (2008)
Nonequilibrium dynamics (2007)
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potential. The ratio of the frequencies of the lowest breathing

modes and the dipole modes !B=!D has been measured in an

array of 1D gases in 2D optical lattices (Moritz et al., 2003).

The experimental data show !B=!D ’ 3:1 for a Lieb-Liniger

gas and !B=!D ’ 4 for a thermal gas, which are consistent

with the theoretical results (Pedri and Santos, 2003). The

experimental observation of strongly damped dipole oscilla-

tions due to quantum fluctuations (Polkovnikov and Wang,

2004; Gea-Banacloche et al., 2006) has been reported (Fertig

et al., 2005).
The 1D-3D crossover and quantum phase transitions from

a 1D superfluid to a Mott insulator have been observed in

quasi-1D systems of an additional lattice potential along the

longitudinal direction (Stöferle et al., 2004; Haller, Hart

et al., 2010; Fabbri et al., 2012). For weak interaction, the

system is still a superfluid at finite lattice depth and the

transition to the Mott insulator is induced by increasing

the lattice depth. For strong interaction, an arbitrary pertur-

bation by a lattice potential may induce a sine-Gordon quan-

tum phase transition from a superfluid Luttinger liquid to a

Mott insulator. These quantum phases can be well distin-

guished by detecting their low-energy excitations via the

technique of Bragg spectroscopy (Haller, Hart et al., 2010).
The techniques of atomic interferometry have been widely

used to explore the phase coherence and fluctuations between

different 1D gases (Schumm et al., 2005; Jo, Choi,

Christensen, Lee et al., 2007; Jo, Choi, Christensen,

Pasquini et al., 2007; Jo, Shin et al., 2007; Hofferberth

et al., 2008; Krüger et al., 2010). The second-order correla-

tion functions, which relate to the density fluctuations and

spatial correlations, have been probed by in situ measure-

ments of density fluctuations (Esteve et al., 2006; Jacqmin

et al., 2011; Perrin et al., 2012) and ex situ measurements of

photoassociation rates (Kinoshita, Wenger, and Weiss, 2005).

These experiments confirm that the local second-order corre-

lation functions are about 2, 1, and 0 for an ideal 1D Bose gas,

a quasicondensed 1D Bose gas, and a Tonks-Girardeau gas,

respectively. In addition to the density correlations, phase

correlations have been probed by matter-wave interferometry

(Betz et al., 2011). Moreover, the three-body correlation

functions of 1D Bose gases have been obtained by measuring

the three-body recombination rate (Laburthe Tolra et al.,

2004; Haller et al., 2011) and the in situ measurements of

third-order number fluctuations (Armijo et al., 2010). In

addition to the measurements of local correlation functions

(Kinoshita, Wenger, and Weiss, 2005), the temporal two-body

correlation function has been measured by the techniques of

scanning electron microscopy (Guarrera et al., 2012).
Beyond investigating equilibrium behavior, there have

been several experimental studies on nonequilibrium behav-

ior in 1D Bose gases. The coherence dynamics in both

isolated and coupled 1D Bose gases have been explored by

using an atom chip (Hofferberth et al., 2007). The absence of

thermalization in a 1D Bose gas has been confirmed by the

time evolution from an out-of-equilibrium state (Kinoshita,

Wenger, and Weiss, 2006). The nonequilibrium dynamics of

an impurity in 1D Bose gases, such as large density fluctua-

tions, multiple scattering events, and interaction dependent

quadruple oscillations, have been studied in some recent

experiments (Palzer et al., 2009; Fabbri et al., 2012). Most

recently, the experimental observations of quantum dynamics
of interacting bosons (Kuhnert et al., 2013; Ronzheimer et al.,
2013) and fast relaxation toward equilibrium of quasilocal
densities, currents, and coherence in an isolated strongly
correlated 1D Bose gas (Trotzky et al., 2012) give a precise
understanding of quantum dynamics and correlations, includ-
ing observation of the spin dynamics in 1D two-component
Bose gases (Widera et al., 2008).

As remarked, quasi-1D trapped systems are created by tight
transverse confinement. A confinement-induced resonance
(CIR) takes place when the incident channel of two incoming
atoms and a transversally excited molecular bound state be-
come degenerate. It has been demonstrated that a CIR takes
place if the 3D scattering length approaches the length scale of
the transverse trap. The CIR has been used to drive a crossover
from the Tonks-Girardeau gas with a strongly repulsive inter-
action to a super Tonks-Girardeau gas with strongly attractive
interaction (Haller et al., 2009; Haller, Mark et al., 2010). In
particular, the stable highly excited gaslike phase known as the
super Tonks-Girardeau gas has been realized in the strongly
attractive regime of bosonic cesium atoms.

2. Fermi gases

In a 3D trapped Fermi gas, the bound diatomic molecules
exist only when the scattering length between the atoms is
positive under s-wave interaction, i.e., when as > 0 (Regal
et al., 2003). In the limit 1=ðkFasÞ � 0, the system is a
weakly attractive Fermi gas. Thus the ground state is a BCS
pair state for a negative scattering length (Chin et al., 2004;
Greiner, Regal, and Jin, 2005). However, in a 1D two-
component trapped Fermi gas, the scattering properties of
two colliding atoms are altered by the tight transverse con-
finement. The existence of a bound state does not rely on the
sign of the scattering length. Using radio-frequency spectros-
copy in an array of 1D Fermi atomic gases trapped within a
2D optical lattice, Moritz et al. (2005) reported that the two-
body bound state exists irrespective of the sign of scattering
length; see Fig. 30. In this experiment, they further demon-
strated that the bound states for negative scattering length can
be stabilized only by the tight transverse confinement (Moritz

FIG. 30 (color online). Two-body bound states in 1D and 3D.

In the 1D case, confinement induced molecules exist for arbitrary

sign of the scattering length, whereas in the 3D case, there are no

bound states at magnetic fields above the Feshbach resonance

(vertical dashed line). From Moritz et al., 2005.
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et al., 2005). Recently, the particle and hole dynamics of

fermionic atoms in amplitude-modulated 1D lattices was

reported (Heinze et al., 2013).
The strong transverse confinement of a waveguide not only

gives rise to an effective 1D s-wave interaction, but also alters
the p-wave interaction in spin-polarized fermions. Because of

the absence of s-wave interaction in the spin-polarized Fermi

gas, the p-wave interaction becomes dominant under reso-

nant scattering conditions (Granger and Blume, 2004;

Imambekov et al., 2010). In a spin-polarized Fermi gas, the

angular part of asymptotic collision wave functions is either

the spherical harmonic Yl¼0;m¼0 if the scattering state is

parallel to the quantization axis or the spherical harmonic

Yl¼0;m¼�1 if the scattering state is perpendicular to the quan-

tization axis. Therefore, in both the 2D and 3D cases, due to

the coexistence of two collision channels and the breakdown

of degeneracy between two collision channels (Ticknor et al.,

2004), doublet structures of p-wave Feshbach resonance have
been observed (Günter et al., 2005). However, for the 1D

spin-polarized system, only one of two collision channels is

involved. Thus there is a single peak structure of p-wave

Feshbach resonance in 1D spin-polarized fermions. The

experimental observation has confirmed such a particular

signature (Günter et al., 2005); see Fig. 31. By loading the

spin-polarized Fermi atoms into a deep 3D optical lattice, one

can prepare a band insulator of localized atoms in potential

wells, which is viewed as a zero-dimensional (0D) system.

There is no resonance feature in such a 0D system because the

p-wave scattering is completely inhibited. When the geome-

try of the gas is tuned from 3D to 2D, the shift of the p-wave
Feshbach resonance depends on the depth of the optical

lattice. In contrast, 1D Fermi gases show a further shift of

resonance and give rise to a broadening of the loss feature.
The 1D two-component Fermi gas defined by the Gaudin-

Yang model is an ideal system for exploring novel pairing

mechanisms. In particular, the formation of a FFLO-like state

with a nonzero center-of-mass momentum gives rise to a

precise understanding of the coexistence of BCS pairs and

polarizations. In 3D, the FFLO state occupies a small portion

of the phase diagram and it is very difficult to observe in

experiments. In contrast, in the 1D Gaudin-Yang model

(Guan et al., 2007; Hu, Liu, and Drummond, 2007; Orso,

2007) the FFLO state becomes much more robust due to the

band fillings of two Fermi seas related to one another, and it

occupies major parts of the phase diagram as demonstrated in

Figs. 7 and 9. See also the experimentally measured phase

diagram in Fig. 32. The system has spin population imbalance

caused by a difference in the number of spin-up and spin-down

atoms. The key features of these T ¼ 0 phase diagrams have

been experimentally confirmed using finite temperature den-

sity profiles of trapped fermionic 6Li atoms (Liao et al., 2010).

Experimental observation reveals that the system has a par-

tially polarized core surrounded by either fully paired or fully

polarized wings at low temperatures that is in agreement with

FIG. 31 (color online). Dimension dependence of the p-wave

Feshbach resonance in spin-polarized Fermi atomic gases. In both

(a) 3D and (b) 2D Fermi gases, the coexistence of two collisional

channels (m ¼ 0 and jmj ¼ 1) gives rise to a doublet feature. (c) In

a 1D Fermi gas with the spin aligned orthogonal to the atomic

motion, the existence of only the collisional channel of jmj ¼ 1
gives rise to a single peak feature. (d) In a 1D Fermi gas with the

spin aligned orthogonal to the atomic motion, the existence of only

the collisional channel of m ¼ 0 gives rise to another single peak

feature. (e) In a 0D Fermi gas within a deep 3D optical lattice, there

is no resonant peak due to the absence of all collisional channels.

From Günter et al., 2005.
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FIG. 32 (color online). Experimental phase diagram as a function

of the central tube polarization. The diamonds and circles denote the

scaled radii of the axial density difference and the minority state

axial density, respectively. The solid lines are given by the TBA

equation (47) at temperature T ¼ 175� 50 nK. The experimental

observation is in reasonable agreement with the theoretical predic-

tion (Hu, Liu, and Drummond, 2007; Orso, 2007) for the zero-

temperature phase diagram of the trapped gas. This phase diagram

experimentally verifies the coexistence of pairing and polarization

at quantum criticality (Feiguin and Heidrich-Meisner, 2007; Guan

et al., 2007; Parish et al., 2007; Zhao et al., 2009; Yin, Guan, Chen,

and Batchelor, 2011). From Liao et al., 2010.
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theoretical prediction of the zero-temperature phase diagram

within the LDA (Hu, Liu, and Drummond, 2007; Orso, 2007).

The quantum phases of pairs, excess fermions, as well as the

mixture of pairs and excess fermions in the phase diagram of

Fig. 32 are also consistent with the analysis of several others

(Feiguin and Heidrich-Meisner, 2007; Guan et al., 2007;

Parish et al., 2007; Kakashvili and Bolech, 2009). The finite

temperature phase boundaries do not indicate a solid phase

transition; a detailed analysis can be seen in Yin, Guan, Chen,

and Batchelor (2011). In a 3D trapped Fermi gas, the fully

paired core is surrounded by a shell of excess fermions

(Partridge et al., 2006; Zwierlein et al., 2006).
The key method to map out the phase diagram in Fig. 32 in

the experiment (Liao et al., 2010) is to measure the in situ

densities of the two spin species. The 1D spatial density

profiles n1;2ðzÞ can be expressed in terms of chemical potential

� ¼ �0 � VðzÞ and effective external field h ¼ h0. Here�0 is

the chemical potential at the trapping center and h0 is the

effective magnetic field of the homogeneous system. They

can be obtained from the Eqs. (14) or the equation of state

(49). Within the LDA (39), theoretical density profiles can be

used to fit the experimental data obtained by inverse Abel

transformation of the radial profiles, as per the method section

in Liao et al. (2010). By changing the polarization, the thresh-

old values of different phases in the density profiles can be read
off the phase boundaries of the phase diagram of Fig. 32. From

the density profiles given in Fig. 33, we see that at low

polarization below the critical value, the system has a partially

polarized core surrounded by fully paired edges. At the critical

polarization, almost the whole region is partially polarized. At

high polarization above the critical value, the system has a

partially polarized core surrounded by fully polarized edges.
Systems with a small number of trapped atoms are also

experimentally feasible (Serwane et al., 2011). Most recently,

the 1D fermionization of two distinguishable fermions has

been experimentally studied by using two fermionic 6Li
atoms (Zürn et al., 2012). The energy of the two-particle

system in the state j "#i is determined by tuning the trapping

potential barrier through which the particles can tunnel out

(Rontani, 2012). The fermionization of two distinguishable

fermions was identified by measuring the tunneling time
constants for different values of the 1D interacting strength.
It is particularly interesting that for a magnetic field below the
confined induced resonance two interacting fermions form a
Tonks-Girardeau state, whereas a super Tonks-Girardeau gas
is created when the magnetic field is above the resonance
value; see Fig. 34. In this case, the two-particle super Tonks-
Girardeau state is stable against three-body collisional losses
since there is no third particle present. Quasi-1D few-particle
systems consisting of up to six ultracold fermionic atoms in
two different spin states with attractive interactions have also
been studied experimentally (Zürn et al., 2013), including the
crossover from few to many-body physics (Wenz et al., 2013).

VIII. CONCLUSION AND OUTLOOK

In previous sections we have seen how results for exactly
solved models of 1D Fermi gases provide valuable insights
into a wide range of many-body phenomena including Fermi
polarons, Fulde-Ferrel-Larkin-Ovchinnikov-like pairing, the
few-body physics of trions, Tomonaga-Luttinger liquids,
spin-charge separation, universal contact, quantum criticality,
and universal scaling. This included discussion of the exotic
many-body physics of 1D Fermi-Bose mixtures and 1D
multicomponent interacting fermions, in particular, with
SU(3), SO(5), and SUðNÞ symmetries. We reviewed experi-
mental progress on the realization of 1D quantum atomic
gases and the experimental confirmation of the phase diagram
of the Gaudin-Yang model in a 1D harmonic trap. In this
section, we discuss some of the promising developments and
provide an outlook for future research. The key points we
have identified are as follows.

(a) High spin symmetries: Recent experimental explora-
tion of highly symmetric Mott insulators (Taie et al.,
2012) gives insight into the Pomeranchuk (1950) type
of cooling due to the fact that the spin degrees in the

FIG. 33 (color online). Integrated axial density profiles of an array

of 1D spin-imbalanced two-component Fermi gases for different

central polarization P. The circles represent the majority, the blue

diamonds represent theminority, and the squares show the difference.

(a) At low Pð¼ 0:015Þ, the partially polarized core is enclosed by the
fully paired edge. (b) For increasing Pð¼ 0:055Þ, the partially

polarized core grows and the fully paired edge shrinks. (c) Near

PcðP ¼ 0:10Þ, where almost the entire cloud is partially polarized.

(d) For the polarization exceeding the critical valuePcðP ¼ 0:33Þ, the
edge of the cloud becomes fully polarized. From Liao et al., 2010.

FIG. 34 (color online). Interaction energy of two distinguishable

fermions trapped in 1D across a confined induced resonance. The

line is the theoretical result of the energy shift. The points show

experimental data for the interacting energy of the two distinguish-

able fermions. The vertical dashed line is the value of the magnetic

field at the confined induced resonance. From Zürn et al., 2012.
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Mott insulating state can hold more entropy than the

Fermi liquid does. In this Mott insulating state, the

entropy per site increases as the spin degrees of freedom

increase. It in turn leads to a temperature reduction

through transfer of entropy from particle motion to

spin degrees of freedom. This exotic nature is different

from large spins in solids where the quantum fluctua-

tions of large spins are weak. Such higher symmetry

opens up further study of magnetically ordered phases

in ultracold fermionic atoms. In particular, loading

large-spin ultracold fermionic atoms into a 1D quantum

wire geometry provides exciting opportunities to test

multicomponent TLL theory and competing superfluid

ordering in 1D interacting fermions with higher sym-

metries: e.g., SU(4), SO(5), and SO(4) symmetries in

spin-3=2 fermions. It is natural to expect that 1D inter-

acting fermions with large spin resulting from higher

mathematical symmetries will greatly expand our

understanding of many-body physics. However, com-

prehensive understanding of these models still poses

theoretical and experimental challenges due to the more

complicated grand canonical ensembles involved.
(b) p-wave BCS pairing and synthetic gauge fields: The

traditional s-wave BCS-pairing models have various

applications to problems in condensed matter physics

(Links et al., 2003; Dukelsky, Pittel, and Sierra, 2004;

Ying et al., 2008a, 2008b), nuclear physics (Pan and

Draayer, 2002), ultrasmall metallic grains (von Delft

and Ralph, 2001), etc. More work along this line has

been achieved in the study of a pþ ip pairing model

(Ibanez et al., 2009; Dunning et al., 2010; Rombouts,

Dukelsky, and Ortiz, 2010). In contrast to the s-wave
pairing model, the pþ ip pairing model has an exotic

zero-temperature phase diagram in terms of density and

attractive coupling strength (Rombouts, Dukelsky, and

Ortiz, 2010). It shows two superfluid phases, confined

strong pairing and deconfined weak pairing, separated

by a third-order confinement-deconfinement quantum

phase transition. Moreover, a type of electron pairing

model with spin-orbit interactions shows that the pairing

order parameter can always have pþ ip-wave symme-

try regardless of the strength of pairing interactions

(Liu et al., 2011). More work is required along this line.

In particular, recent developments in the study of ultra-

cold atoms have opened up new opportunities to simu-

late synthetic external Abelian and non-Abelian gauge

fields coupled to neutral atoms by controlling atom-light

interactions (Lin et al., 2009) and the ultracold-atom

analog of the mesoscopic conductor (Brantut et al.,

2012). An important application of this synthetic gauge

field is the realization of spin-orbit coupling in degen-

erate Fermi gases (Cheuk et al., 2012; Wang et al.,

2012). The Fano-Feshbach resonances can be used to

modify the strength of atomic interactions without

changing the characteristic range of the potential

(Williams et al., 2012). Raman laser beams coupled to

Zeeman states of ultracold fermionic atoms can create

synthetic magnetic, electric fields, and spin-orbit cou-

pling; see Bloch, Dalibard, and Nascimbéne (2012) and

Zhai (2012). These new developments inspire further

study of spin-orbit coupling, and p-wave and d-wave
pairing by exact solutions of new mathematical models,
with clear applications in physics.

(c) Universal Wilson ratio: The low-energy physics of
interacting Fermi systems exhibits universal phe-
nomena, such as TLL in 1D and Fermi liquids in
higher dimensions. It is highly desirable to find an
intrinsic connection between these low-energy theo-
ries. The Wilson ratio is the ratio of susceptibility to
specific heat. Despite these two physical quantities
having different low-temperature behavior, the
Wilson ratio is a constant at the fixed point of
interacting fermionic systems in 3D (Wilson,
1975). For noninteracting electrons, the Wilson ratio
is unity. The value of the ratio indicates interaction
effects and quantifies spin fluctuations. In contrast to
the phenomenological TLL parameters, this ratio
gives a measurable physical quantity which mani-
fests universal TLL physics—the effective fixed
point model of the TLL universality class.
Experimental measurement of the Wilson ratio of
the TLL in a spin-1=2 Heisenberg ladder was re-
cently reported (Ninios et al., 2012). It is natural to
believe that this ratio can be used to quantify the
magnetic phases (the FFLO-like phases) in 1D at-
tractive Fermi gases of ultracold atoms with different
symmetries. Note that at the critical point it is a
constant solely dependent on the TLL parameter
and onset charge velocities of different states. This
ratio is experimentally measurable with ultracold
Fermi atomic gases trapped in 1D.

(d) Diffraction versus nondiffraction: Nondiffraction in
the many-particle scattering process is a unique feature
of integrable systems (McGuire, 1964; Gu and Yang,
1989; Sutherland, 2004; Lamacraft, 2012). In princi-
ple, diffractive and nondiffractive scattering can be
tuned via controlling interspecies and intraspecies
scattering lengths. Experimental exploration of a vio-
lation of this characteristic yields valuable insight into
understanding the nondiffractive form of the Bethe
ansatz wave function, i.e., how weak violations of
nondiffractive scattering still give rise to the Bethe
ansatz wave function in the asymptotic region. 1D
many-body systems with a finite range potential be-
tween atoms are likely to be an ideal simulator for
identifying the consequences of diffractive versus non-
diffractive scattering. In this regard, across a narrow
resonance, the 1D effective potential is determined by
not only the scattering length, but also the effective
range which is introduced by a strong energy-
dependent scattering amplitude of two colliding
atoms (Gurarie and Radzihovsky, 2007; Cui, 2012a;
Qi and Guan, 2013). Beyond the fermionization
of two distinguishable fermions (Zürn et al., 2012), it
is an immediate goal to experimentally probe three
distinguishable fermions in a 1D harmonic trap.
A possible test of the fundamental nature of diffrac-
tion versus nondiffraction for systems with three par-
ticles may ultimately lead to experimental tests for
Yang-Baxter integrability in quantum many-body
systems.
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Pupillo, and H.-C. Nägerl, 2009, Science 325, 1224.

Haller, E., R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M.
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